Ab Initio Investigation of the Electronic and Geometric Structure of Magnesium Diboride, MgB_{2}

Demeter Tzeli and Aristides Mavridis*
Laboratory of Physical Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, P.O. Box 64 004, 15710 Zografou, Athens, Greece

Received: May 25, 2005

Employing multireference variational (MRCI) and coupled cluster (CC) methods combined with quadruple- ζ quality correlation-consistent basis set, we have studied 36 states of the magnesium diboride $\left(\mathrm{MgB}_{2}\right)$ molecule as well as 17 states of the experimentally unknown diatomic MgB . For all states of MgB_{2}, we report geometries, atomization energies, and dipole moments, while for the first 5 states, potential energy profiles have been also constructed. The ground state is formally of ${ }^{1} \mathrm{~A}_{1} \mathrm{~V}$-shaped symmetry with an atomization energy of $108.1(109) \mathrm{kcal} / \mathrm{mol}$ at the $\mathrm{MRCI}\left(\mathrm{MRCI}+\right.$ Davidson correction) level. The first excited state $\left({ }^{3} \mathrm{~B}_{1}\right)$ is less than $1 \mathrm{kcal} / \mathrm{mol}$ above the $\tilde{\mathrm{X}}^{1} \mathrm{~A}_{1}$ state, with the next state of linear $\mathrm{Mg}-\mathrm{B}-\mathrm{B}$ geometry ($\tilde{\mathrm{b}}^{3} \Sigma^{-}$) located 10 $\mathrm{kcal} / \mathrm{mol}$ higher. In all states, bent or linear, the bonding is complicated and unconventional because of the extraordinary bonding agility of the boron atom(s).

1. Introduction

In 2001, Jun Akimitsu's group ${ }^{1}$ discovered that the simple compound magnesium diboride $\left(\mathrm{MgB}_{2}\right)$ becomes superconducting at the transition temperature $T_{\mathrm{c}}=39 \mathrm{~K}$, almost twice as large compared to the highest T_{c} among the intermetallics, namely, that of $\mathrm{Nb}_{3} \mathrm{Ge}\left(T_{\mathrm{c}}=23 \mathrm{~K}\right) .{ }^{2}$ Given the chemical simplicity of MgB_{2} as well as its simple crystal structure, ${ }^{1,3}$ the natural abundance of its constituent elements, and therefore the prospects for plausible applications, this was indeed a remarkable discovery. The enthusiastic response of the scientific community was testified to by a series of experimental ${ }^{4}$ and theoretical ${ }^{5}$ publications.

It is worthwhile to recall at this point that the elements Mg and B have played a fundamental role in the development of "pure and applied chemistry" as only the names of "Grignard reagent" (RMgX) and "boron hydrides" $\left(\mathrm{B}_{x} \mathrm{H}_{y}\right)$ suggest. ${ }^{6}$ And although MgB_{2} has been well-characterized since the early fifties, ${ }^{3}$ until now nobody suspected its unusual properties. Experimenters using different techniques have already established a variety of sometimes "conflicting" properties, for example, the existence of two superconducting gaps in MgB_{2} which had not been seen before in any material. ${ }^{2}$

Obviously, all the above characteristics of MgB_{2} refer to the solid state. On the other hand, there are three very recent theoretical ab initio works on the isolated noninteracting MgB_{2} molecule. The first one by Ercoç in 2003 was conducted at a very low level of theory; ${ }^{7}$ in 2004, Yang et al. ${ }^{8}$ calculated 9 states (6 linear and 3 bent) around equilibrium using the QCISD/ 6-311G* and $\operatorname{CCSD}(\mathrm{T}) / \mathrm{cc}-\mathrm{pVTZ}$ methods predicting different ground states, ${ }^{3} \mathrm{~B}_{1}$ and ${ }^{1} \mathrm{~A}_{1}$, respectively. However, on the basis of their $\operatorname{CCSD}(\mathrm{T})$ results, they concluded that the ground state is of ${ }^{1} \mathrm{~A}_{1}$ symmetry with the ${ }^{3} \mathrm{~B}_{1}$ state $412 \mathrm{~cm}^{-1}$ higher. A few months later, Lee and Wright ${ }^{9}$ published the investigation of 21 states of MgB_{2} around equilibrium using a variety of methods, MP2, DFT(B3LYP), QCISD, UCCSD(T), and RCCSD-

[^0](T), employing a $6-311+G$ (3df) basis set. Not all 21 states have been calculated at all levels of theory, only at MP2. Ten of the 21 states have been calculated at the DFT level with conflicting results as compared to the MP2 values. At the QCISD and UCCSD(T) levels, they calculated 3 states, again with conflicting results between these 2 methods. Now, at the $\operatorname{RCCSD}(T)$ level and using a correlation-consistent aug-ccpVQZ basis, they obtained the first 4 states around equilibrium. Then, they recalculated these 4 states by including core functions on B and Mg , but at the geometry of the previous level. Finally, they also performed MRCI/aug-cc-pVQZ//RCCSD(T)/aug-ccpVQZ , i.e., single-point calculations, for these 4 lowest states. At this level of theory, Lee and Wright ${ }^{9}$ concluded as well that the ground state is of ${ }^{1} \mathrm{~A}_{1}$ symmetry with the $\tilde{a}^{3} \mathrm{~B}_{1}$ about 0.4 $\mathrm{kcal} / \mathrm{mol}$ higher. ${ }^{9}$

Motivated by the remarkable properties of crystalline MgB_{2} and the somehow conflicting theoretical results reported so far, ${ }^{8,9}$ we herein report ab initio calculations using multireference and coupled-cluster methods in conjunction with quantitative cor-relation-consistent basis sets. In both methods, the symmetry of the ground state seems to be ${ }^{1} \mathrm{~A}_{1}$ (but, see below).

We have examined a total of 36 states, reporting energetics, dipole moments, geometric and spectroscopic parameters, and Mulliken densities. In addition, for the first 5 states, we have constructed potential energy profiles of the corresponding potential surfaces, while some emphasis is given in explaining the bonding with the help of simple valence-bond-Lewis (vbL) diagrams.

In section 2, we define the computational procedure followed; in section 3, we present our results on the diatomics MgB and B_{2} and on the triatomic MgB_{2}, and in section 4, some final remarks and comments are presented.

2. Computational Procedure

For the Mg and B atoms, the correlation-consistent basis by Dunning ${ }^{10}$ of quadruple cardinality, cc-pVQZ $=16 s 12 p 3 \mathrm{~d} 2 \mathrm{f} 1 \mathrm{~g}$ and 12 s 6 p 3 d 2 f 1 g , respectively, were employed through all
calculations. Both sets were generally contracted to [6s5p3d2f1g/ Mg $5 \mathrm{~s} 4 \mathrm{p} 3 \mathrm{~d} 2 \mathrm{f} 1 \mathrm{~g} / \mathrm{B}]$, amounting to 169 spherical Gaussian functions for the MgB_{2} system.

Our general approach is the complete active space selfconsistent field (CASSCF) method, extended to the single and double replacements out of the zeroth-order CASSCF wave function (CASSCF $+1+2=\mathrm{MRCI}$), to account for "dynamical" correlation. Our reference space is built by allotting the 8 (chemically) active electrons of $\mathrm{MgB}_{2}\left(3 \mathrm{~s}^{2}\right.$ on Mg and $2 s^{2} 2 p^{1}$ on each B atom) among 12 orbital functions (3s and 3p on $\mathrm{Mg}+2 \mathrm{~s}$ and 2 p on B's). The ensuing CASSCF wave function expansions range from $12776\left({ }^{5} \mathrm{~B}_{2} ; \mathrm{BMgB}\right)$ to 28376 $\left({ }^{3} \mathrm{~B}_{2} ; \mathrm{BMgB}\right)$ configuration functions (CF), with MRCI spaces ranging from $111 \times 10^{6}\left(\mathrm{MgBB} ;{ }^{1} \Sigma^{-}\right)$to $202 \times 10^{6}(\mathrm{MgBB}$; ${ }^{3} \Sigma^{-}$) CFs. By applying the internal contraction (icMRCI) approximation, ${ }^{11}$ the number of CFs is reduced by more than an order of magnitude, thus making the calculations feasible. Size nonextensivity errors do not exceed 2 mh at the icMRCI level, reduced to about 0.5 mh by including the Davidson correction for quadruples $(+\mathrm{Q})$.

For the four lowest states, $\tilde{\mathrm{X}}^{1} \mathrm{~A}_{1}(\mathrm{BMgB}),{ }^{3} \mathrm{~B}_{1}(\mathrm{BMgB}),{ }^{3} \Sigma^{-}$ (MgBB), and ${ }^{5} \Sigma^{-}(\mathrm{MgBB})$, the coupled-cluster single reference + singles + doubles + perturbative connected triples method $[\operatorname{RCCSD}(T)]$ as implemented in MOLPRO ${ }^{12}$ was also used. Note that both SCF and CASSCF orbitals were used for the construction of the single reference function. For the ${ }^{1} \mathrm{~A}_{1}$ state only, Møller-Plesset MP2 and MP4 calculations were also tried with the harmonic frequencies obtained at the MP2/cc-pVQZ level of theory.

Finally, concerning the diatomic molecules MgB and B_{2}, we have examined 17 and 5 states, respectively, at the ic-MRCI/ cc-pVQZ level and within the spirit outlined above.

3. Results and Discussion

A. The Diatomics $\mathbf{M g B}$ and \mathbf{B}_{2}. In the present work, two geometrical isomers of MgB_{2} are examined, namely, $\mathrm{B}-\mathrm{Mg}-\mathrm{B}$ and $\mathrm{Mg}-\mathrm{B}-\mathrm{B}$: Both can be thought of as products of the interaction channels $\mathrm{MgB}+\mathrm{B}$ or $\mathrm{Mg}+\mathrm{B}_{2}$. Therefore, for a better understanding of MgB_{2}, the study of both diatomics MgB and B_{2} is rather mandatory.

It is rather surprising that no experimental results are available for MgB . Theoretically, we are aware of only two publications on MgB by Boldyrev et al. ${ }^{13}$ and by Machado and co-workers. ${ }^{14}$ The former authors investigated the first four states $\mathrm{X}^{2} \Pi, \mathrm{~A}^{2} \Sigma^{+}$, ${ }^{4} \Pi$, and ${ }^{4} \Sigma^{-}$and a higher excited state of ${ }^{2} \Pi$ symmetry around equilibrium, in a variety of single reference methods, namely, MP2(full)/6-311+G*, QCISD(T)/6-311+G(2df), and MP4/6$311+\mathrm{G}^{*} / / \mathrm{MP} 2 / 6-311+\mathrm{G}^{*}$. Machado et al. ${ }^{14}$ examined the first two states of $\mathrm{BeB}, \mathrm{MgB}$, and CaB using a (truncated) MRCISD/ $6-311+G(3 d 1 f)$.

On the contrary, B_{2} is a well-explored molecule both experimentally ${ }^{15}$ and theoretically. ${ }^{16}$ Nevertheless, for reasons of uniformity and completeness, the five lowest states of the B_{2} molecule are currently examined at the MRCI/cc-pVQZ level.

The MRCI energy splittings of $\mathrm{Mg}\left[{ }^{1} \mathrm{P},{ }^{3} \mathrm{P}\left(3 s^{1} 3 \mathrm{p}^{1}\right) \leftarrow{ }^{1} \mathrm{~S}\right.$ $\left.\left(3 s^{2}\right)\right]$ and B atoms $\left.{ }^{4} \mathrm{P}\left(2 s^{1} 2 \mathrm{p}^{2}\right) \leftarrow{ }^{2} \mathrm{P}\left(2 \mathrm{~s}^{2} 2 \mathrm{p}^{1}\right)\right]$ are in excellent agreement with experiment (in parentheses ${ }^{17}$): 2.603 (2.714), 4.318 (4.346), and 3.591 (3.571) eV, respectively. These three excited states are actively involved in the calculated states of $\mathrm{MgB}, \mathrm{B}_{2}$, and MgB_{2}.
$M g B$. Table 1 lists the energetics, the usual spectroscopic parameters, and the dipole moments of 17 states of MgB , spanning an energy range of about 4.2 eV , correlating adiabati-

Figure 1. Potential energy curves of 17 states of the MgB molecule at the MRCI/cc-pVQZ level of theory. All energies have been shifted by $+224 E_{\mathrm{h}}$.
cally to $\operatorname{Mg}\left({ }^{1} \mathrm{~S}\right)+\mathrm{B}\left({ }^{2} \mathrm{P},{ }^{4} \mathrm{P}\right), \operatorname{Mg}\left({ }^{3} \mathrm{P}\right)+\mathrm{B}\left({ }^{2} \mathrm{P}\right)$, and $\operatorname{Mg}\left({ }^{3} \mathrm{P}\right)+$ $\mathrm{B}\left({ }^{4} \mathrm{P}\right)\left(16^{6} \Sigma^{-}\right)$. Corresponding potential energy curves (PECs) are plotted in Figure 1. Table 2 presents leading CASSCF configurations and Mulliken atomic populations of the first four states of $\mathrm{MgB}\left(\mathrm{X}^{2} \Pi, \mathrm{~A}^{2} \Sigma^{+}, 2^{4} \Sigma^{-}\right.$, and $\left.3^{4} \Pi\right)$. The valence-bondLewis (vbL) bonding diagrams of these four states based on their CFs and population densities are shown below.

$\mathrm{Mg}(\mathrm{S}) \quad \mathrm{B}\left(\mathrm{P}^{2} ; \mathrm{M}= \pm 1\right) \quad X^{2} \Pi$

$\operatorname{Mg}\left({ }^{3} \mathrm{P} ; \mathrm{M}= \pm 1\right) \quad \mathrm{B}\left({ }^{2} \mathrm{P} ; \mathrm{M}=\mp 1\right) \quad 2^{4} \Sigma^{-}(1)$

$\operatorname{Mg}\left({ }^{3} \mathrm{P} ; \mathrm{M}=0\right) \quad \mathrm{B}\left({ }^{2} \mathrm{P} ; \mathrm{M}= \pm 1\right)$
$3^{4} \Pi(1)$

The ground state of MgB is of ${ }^{2} \Pi$ symmetry with a binding energy and internuclear distance of $D_{\mathrm{e}}=11.85$ (12.7) kcal/ mol and $r_{\mathrm{e}}=2.3862(2.383) \AA$, respectively, at the MRCI-

TABLE 1: Absolute Energies E (hartree), Bond Lengths $r_{e}(\AA)$, Binding Energies $D_{e}(\mathbf{k c a l} / \mathrm{mol})$ with Respect to the Adiabatic Fragments, Harmonic Frequencies and Anharmonic Corrections ω_{e}, $\omega_{\mathrm{e}} x_{\mathrm{e}}\left(\mathrm{cm}^{-1}\right)$, Rotational Vibrational Couplings $\alpha_{\mathrm{e}}\left(\mathrm{cm}^{-1}\right)$, Centrifugal Distortions $\overline{\boldsymbol{D}}_{\mathrm{e}}\left(\mathrm{cm}^{-1}\right)$, Mulliken Charges on $\boldsymbol{B} \boldsymbol{q}_{\mathrm{B}}$, Dipole Moments $\boldsymbol{\mu}$ (debye), and Energy Separations T_{e} (kcal/mol) of the MgB Molecule at CASSCF, MRCI, ${ }^{a}$ and MRCI $+\mathbf{Q}^{b} /$ cc- pVQZ Levels. Other Theoretical Results Are Also Included.

state	method	-E	$r_{\text {e }}$	$D_{\text {e }}$	$\omega_{\text {e }}$	$\omega_{\mathrm{e}} x_{\mathrm{e}}$	$\alpha_{e}\left(10^{-3}\right)$	$\bar{D}_{\mathrm{e}}\left(10^{-6}\right)$	$-q_{\mathrm{B}}$	$\langle u\rangle / \mu_{\mathrm{FF}}{ }^{c}$	$T_{\text {e }}$
$\mathrm{X}^{2} \Pi$	CASSCF	224.211593	2.4423	2.69	310.9	12.4	10.6	2.18	0.24	1.86/1.86	0.0
	MRCI	224.267947	2.3862	11.85	365.9	6.14	6.80	1.80	0.31	2.38/2.39	0.0
	MRCI+Q	224.27062	2.383	12.7						/2.44	0.0
	MP2(full)/6-311+G* ${ }^{\text {d }}$	224.351223	2.473		269						0.0
	$\mathrm{QCISD}(\mathrm{T}) / 6-311+\mathrm{G}(2 \mathrm{df})^{d}$	224.25419	2.390	10.8							0.0
											0.0
$\mathrm{A}^{2} \Sigma^{+}$	CASSCF	repulsive									
	MRCI	224.252702	2.7515	2.28	192.3	10.6	12.1	2.79	0.04	-0.42/-0.41	9.57
	MRCI+Q	224.25481	2.730	2.83						/-0.31	9.92
	MP2(full)/6-311+G* ${ }^{\text {d }}$	repulsive									
	QCISD(T)/6-311+G(2df) ${ }^{d}$	224.23962	2.775	1.7							9.1
$2^{4} \Sigma^{-}(1)$	CASSCF	224.183512	2.1605	47.97	525.5	3.20	4.44	1.59	0.35	3.37/3.37	17.6
	MRCI	224.235687	2.1259	51.98	554.9	3.54	4.54	1.57	0.39	3.85/3.84	20.2
	MRCI+Q	224.23792	2.126	52.2						13.87	20.5
	MP2(full)/6-311+G* ${ }^{\text {d }}$	224.32603	2.117		568						15.8
	QCISD(T)/6-311+G(2df) ${ }^{\text {d,e }}$	224.22221									20.1
$3^{4} \Pi(1)$	CASSCF	224.182164	2.2703	45.33	446.7	1.66	6.20	1.62	0.40	2.04/2.04	18.5
	MRCI	224.235411	2.2769	51.61	474.8	0.01	2.52	1.41	0.37	1.98/1.92	20.4
	MRCI+Q	224.23820	2.276	52.3						/1.92	20.3
	MP2(full)/6-311+G* ${ }^{*}$	224.33561	2.263		510						9.8
	QCISD(T)/6-311+G(2df) ${ }^{\text {d,e }}$	224.22283									19.7
$4^{2} \Sigma^{-}(1)$	CASSCF	224.153555	2.1973	26.07	493.2	3.40	3.72	1.63	0.47	2.13/2.13	36.4
	MRCI	224.209085	2.1496	35.04	517.0	5.42	12.3	1.71	0.47	2.64/2.80	36.9
	MRCI+Q	224.21202	2.149	35.9						/2.81	37
$5^{2} \Pi(2)$	CASSCF ${ }^{\text {f }}$	224.14056	2.338	20.1	424.5	4.03	3.84	1.51	0.35	1.89/2.05	44.6
	MRCI	224.20685	2.305	33.7	458.1	4.39	4.98	1.42	0.37	2.12/2.03	38.3
	MRCI+Q	224.2116	2.308	35.6						/2.05	37
$6^{2} \Delta(1)$	CASSCF ${ }^{f}$	224.13460	2.203	17.9	460.6	5.80	4.80	1.84	0.23	2.02/2.59	48.3
	MRCI	224.20383	2.151	31.8	521.0	5.37	6.46	1.66	0.35	3.25/3.30	40.2
	MRCI+Q	224.2083	2.157	33.2						13.35	39
$7^{2} \Sigma^{+}(2)$	CASSCF ${ }^{\text {f }}$	224.12767	2.264	13.4	379.3	11.0	9.29	2.31	0.20	1.75/1.93	52.7
	MRCI	224.19086	2.231	23.7	404.8	7.87	8.76	2.22	0.25	2.37/2.37	48.4
	MRCI+Q	224.1946	2.235	24.7						/2.35	48
$8^{2} \Pi(3)$	CASSCF ${ }^{\text {f }}$	224.11286	2.757	4.74	303.8	6.68	3.53	1.10	0.18	0.87/0.67	62.0
	MRCI	224.17914	2.724	16.4	280.8	0.98	1.86	1.38	0.04	-0.30/-0.34	55.7
	MRCI+Q	224.1841	2.712	18.1						1-0.50	54
$9^{2} \Sigma^{+}(3)$	CASSCFf	224.10555	3.023	-0.38					0.07	0.55/0.15	66.5
	MRCI	224.16548	2.596	7.77	357.8	8.87	4.40	1.14	0.15	0.46/0.43	64.3
	MRCI+Q	224.1703	2.548	9.5						/0.58	63
$10^{4} \Sigma^{-}(2)$	CASSCF ${ }^{\prime}$	224.09820	2.186	4.32	414.2	28.8	16.4	2.43	0.39	3.24/3.55	71.2
	MRCI	224.15975	2.104	26.9	618.1	6.10	3.15	1.35	0.39	3.83/3.86	67.9
	MRCI+Q	224.1636	2.104	29.0						13.89	67
$\begin{aligned} & 11^{4} \Delta(1) \\ & 12^{4} \Sigma^{+}(1) \\ & 13^{4} \Pi(2) \end{aligned}$		repulsive									
		repulsive									
	CASSCF	repulsive									
	MRCI	224.15321	5.000	0.22					0.00	-0.08/-0.11	72.0
	MRCI+Q	224.1555	4.799	0.26						/-0.14	72
$\begin{aligned} & 14^{4} \Sigma^{+}(2) \\ & 15^{4} \Pi(3) \end{aligned}$		repulsive									
	CASSCF	repulsive									
	MRCI	224.11855	3.945	1.04					0.02	0.08/0.07	93.7
	MRCI+Q	224.1196	3.881	1.29						/0.14	95
$16^{6} \Sigma^{-}(1)$	CASSCF	224.08667	2.303	49.8	437.3	2.44	3.88	1.57	0.49	3.00/3.00	78.4
	MRCI	224.11443	2.293	58.2	441.9	2.49	3.93	1.57	0.48	3.03/3.03	96.3
	MRCI +Q	224.1151	2.294	58.5						13.03	98

${ }^{a}$ Internally contracted MRCI. ${ }^{b}+\mathrm{Q}$ refers to the multireference Davidson correction. ${ }^{c}\langle\mu\rangle$ calculated as expectation value; μ_{FF} calculated by the finite field method. ${ }^{d}$ Ref $13 .{ }^{e}$ QCISD(T)/6-311+G(2df)/MP2(full)/6-311+G ${ }^{*} .{ }^{f}$ State-averaged CASSCF.
$(+Q)$ level. According to diagram 1, this rather weak bonding of the $X^{2} \Pi$ state is the result of a charge transfer from Mg to B via the σ frame and from B to Mg through the π frame, amounting to a total electron transfer to the B atom of about $0.2 \mathrm{e}^{-}$and a $\sigma, 1 / 2 \pi$ (one electron) bonding character.

The first excited state, $\mathrm{A}^{2} \Sigma^{+}$of MgB located $9.6 \mathrm{kcal} / \mathrm{mol}$ above the X state, as expected from diagram 2, is slightly or van der Waals bound by $2.28(2.8) \mathrm{kcal} / \mathrm{mol}$ at the $\mathrm{MRCI}(+\mathrm{Q})$ level.

The next two states, $2^{4} \Sigma^{-}$and $3^{4} \Pi$, are strictly degenerate within the accuracy of our calculations, located about $20.5 \mathrm{kcal} /$ mol above the ground state and both correlating to $\mathrm{Mg}\left(3 s^{1} 3 \mathrm{p}^{1}\right.$; $\left.{ }^{3} P\right)+B\left(2 s^{2} 2 p^{1} ;{ }^{2} P\right)$. However, their electronic structure is quite different as evidenced from diagrams 3 and 4 . The bonding in ${ }^{4} \Sigma^{-}$comprises one σ and two $1 / 2 \pi$ bonds as compared to a $1 / 2$ σ and a $1 / 2 \pi$ of the $3^{4} \Pi$ state. This is reflected in the equilibrium bond distance of $3^{4} \Pi$, which is $0.06 \AA$ larger than the bond length of the ${ }^{4} \Sigma^{-}$state. Of course, both states have identical

TABLE 2: Leading CASSCF Configuration Functions and Mulliken Atomic Distributions of the First Four States of MgB Molecule

state	configurations ${ }^{a}$	Mg				B			
		3 s	$3 \mathrm{p}_{z}$	$3 \mathrm{p}_{x}$	$3 \mathrm{p}_{y}$	2s	$2 \mathrm{p}_{z}$	$2 \mathrm{p}_{x}$	$2 \mathrm{p}_{y}$
$\mathrm{X}^{2} \Pi$	$0.91 / \sqrt{2}\left\|1 \sigma^{2} 2 \sigma^{2}\left(1 \pi_{x}{ }^{1}+\mathrm{i} 1 \pi_{y}{ }^{1}\right)\right\rangle$	1.37	0.20	0.08	0.08	1.77	0.54	0.46	0.46
$\mathrm{A}^{2} \Sigma^{+b}$	$0.91\left\|1 \sigma^{2} 2 \sigma^{2} 3 \sigma^{1}\right\rangle$	1.62	0.23	0.04	0.04	1.83	1.06	0.06	0.06
$2^{4} \Sigma^{-}(1)$	$0.95\left\|1 \sigma^{2} 2 \sigma^{1} 1 \pi_{x}{ }^{1} 1 \pi_{y}{ }^{1}\right\rangle$	0.99	0.16	0.21	0.21	1.55	0.25	0.77	0.77
$3^{4} \Pi(1)$	$0.97 / \sqrt{2}\left\|1 \sigma^{2} 2 \sigma^{1} 3 \sigma^{1}\left(1 \pi_{x}{ }^{1}+\mathrm{i} 1 \pi_{y}{ }^{1}\right)\right\rangle$	0.91	0.53	0.05	0.05	1.62	0.83	0.46	0.46

${ }^{a}$ Our orbital enumeration refers only to the five valence electrons, i.e., we do not count the doubly occupied four σ and two π "core" orbitals. ${ }^{b}$ MRCI level.

TABLE 3: Absolute Energies \boldsymbol{E} (hartree), Bond Lengths $\boldsymbol{r}_{\mathrm{e}}(\mathbf{\AA})$, Binding Energies $\boldsymbol{D}_{\mathrm{e}}(\mathrm{kcal} / \mathrm{mol})$ with Respect to the Adiabatic Atoms, Harmonic Frequencies and Anharmonic Corrections $\omega_{\mathrm{e}}, \omega_{\mathrm{e}} x_{\mathrm{e}}\left(\mathrm{cm}^{-1}\right)$, Rotational Vibrational Couplings $\alpha_{\mathrm{e}}\left(\mathrm{cm}^{-1}\right)$, Centrifugal Distortions $\bar{D}_{\mathrm{e}}\left(\mathrm{cm}^{-1}\right)$, and Energy Separations $T_{\mathrm{e}}(\mathrm{kcal} / \mathrm{mol})$ of the B_{2} Molecule at CASSCF, MRCI, ${ }^{a}$ and MRCI $+Q^{b} /$ cc-pVQZ Levels. Experimental and Previous Theoretical Results Are Also Included.

state	method	-E	$r_{\text {e }}$	$D_{\text {e }}$	$\omega_{\text {e }}$	$\omega_{\mathrm{e}} x_{\mathrm{e}}$	$\alpha_{e}\left(10^{-2}\right)$	$\bar{D}_{\mathrm{e}}\left(10^{-6}\right)$	$T_{\text {e }}$
$\mathrm{X}^{3} \Sigma_{\mathrm{g}}{ }^{-}$	CASSCF	49.221045	1.6144	61.31	1017.9	8.73	1.40	6.27	0.0
	MRCI	49.304129	1.5984	65.39	1039.2	9.03	1.44	6.38	0.0
	MRCI+Q	49.30797	1.599	65.1					0.0
	MRCI/[5s4p3d2f1 g] ${ }^{\text {c }}$		1.600	65.6	1041				0.0
	QCISD(T)/6-311G*d	49.28005		60.53					
	PMP4(4)/6-311G(2df) ${ }^{d}$	49.28946		64.81					
	SDCI/(8s6p3d2f) ${ }^{\text {e }}$	49.272178	1.602	47.27					
	CASSCF/cc-pV5Zf	49.221420	1.6141	61.4	1018.2	8.8	1.40		
	MRCI/cc-pV5Zf	49.306057	1.5973	65.8	1040.6	9.1	1.44		
	CCSD(T)/cc-pCV6Z ${ }^{\text {g }}$	49.306720	1.5919	64.77	1050.4				
	CCSD(T)/cc-pCV6Z ${ }^{\text {g }}$ h	49.409725	1.5855	65.53	1059.3				
	MRCI/cc-pCV5Z ${ }^{8}$	49.306238	1.5971	65.78	1040.7				
	MRCI+Q/cc-pCV5Z ${ }^{8}$	49.310144	1.5973	65.53	1038.8				
	MRCI/cc-pCV5Z ${ }^{\text {g }}$ h	49.403777	1.5902	67.12	1052.5				
	MRCI+Q/cc-pCV5Z ${ }^{\text {g }}$,	49.411557	1.5905	66.69	1049.3				
	MR-AQCC/cc-pVQZ ${ }^{1}$		1.5986	65.63	1037				
	expt		1.590^{j}	$69.6{ }^{j}$	1051.3 ${ }^{\text {j }}$	$9.35{ }^{j}$	$1.4{ }^{i}$		
	expt		1.590^{l}	68.49 ± 14^{k}	$1052.7^{\text {l }}$				
	expt		1.5838^{m}		1060^{m}				
$a^{5} \Sigma_{u}{ }^{-}$	CASSCF	49.221663	1.5441	131.20	1217.5	7.08	1.15	5.72	-0.39
	MRCI	49.296874	1.5253	142.91	1255.1	7.22	1.16	5.79	4.55
	MRCI +Q	49.29990	1.525	143.4					5.07
	MRCI/[5s4p3d2f1 g] ${ }^{\text {c }}$		1.526	145	1245				4.86
	MR-AQCC/cc-pVQZ ${ }^{1}$		1.5250	143.68	1255				5.02
$\mathrm{A}^{3} \Pi_{u}$	CASSCF	49.198041	1.7778	45.62	782.0	7.46	1.30	5.95	14.44
	MRCI	49.287904	1.7545	55.09	808.2	7.44	1.31	6.03	10.18
	MRCI + Q	49.29289	1.754	55.7					9.46
	MRCI/[5s4p3d2f1 g] ${ }^{\text {c }}$		1.756	55.5	807				10.07
	MR-AQCC/cc-pVQZ ${ }^{i}$		1.7546	55.83	806				9.80
	expt n		1.74405		817.997	7.458	1.32	5.73	
$\mathrm{b}^{1} \Delta_{\mathrm{g}}$	CASSCF		1.6365				1.49	6.32	
	MRCI	49.283319	1.6172	52.30	996.9	9.88	1.52	6.46	13.06
	MRCI + Q	49.28777	1.618	52.4					12.7
	MRCI/[5s4p3d2f1 g] ${ }^{\text {c }}$		1.619	52.6	973				12.97
	$\mathrm{MR}-\mathrm{AQCC} / \mathrm{cc}-\mathrm{pVQZ}$ $\text { expt }^{o}$		$\begin{aligned} & 1.6175 \\ & 1.616 \end{aligned}$	52.76	995				12.87
$\mathrm{c}^{1} \Sigma_{\mathrm{g}}{ }^{+} \mathrm{G}^{p}{ }^{p}$	CASSCF	49.185623	1.6503	36.57	928.5	10.95	1.60	6.60	22.23
	MRCI	49.270498	1.6438	44.05	903.9	16.05	1.96	7.14	21.10
	MRCI + Q	49.27466	1.648	44.2					20.9
	MRCI/[5s4p3d2f1g] ${ }^{\text {c }}$		1.653	44.6	868				20.95
	$\begin{aligned} & \mathrm{MR}-\mathrm{AQCC} / \mathrm{cc}-\mathrm{pVQZ} Z^{i} \\ & \mathrm{expt}^{9} \end{aligned}$		$\begin{aligned} & 1.6545 \\ & 1.650 \end{aligned}$	44.75	829				20.89
$\left.\mathrm{c}^{1} \Sigma_{\mathrm{g}}{ }^{+} \mathrm{L}\right)^{p}$	CASSCF	49.185270	1.9216	36.35	618.5	7.03	1.13	5.97	22.45
	MRCI	49.262114	1.8716	38.79					26.36
	MRCI+Q	49.26645	1.8438	39.1					26.1

${ }^{a}$ Internally contracted MRCI. ${ }^{b}+\mathrm{Q}$ refers to the multireference Davidson correction. ${ }^{c}$ Ref 16a. ${ }^{d}$ Ref 16 b . ${ }^{e}$ Ref $16 \mathrm{c} .{ }^{f}$ Ref 16d. ${ }^{g}$ Ref $16 \mathrm{e} .{ }^{h}$ All electrons are correlated. ${ }^{i}$ Ref 16 f. ${ }^{j}$ Ref $15 \mathrm{a}, D_{0}$ value. ${ }^{k}$ Ref 15 b ; thermochemical data, D_{0} value. ${ }^{l}$ Ref 15 c . ${ }^{m}$ Ref 15 d . ${ }^{n}$ Ref 15 e ; high-resolution Fourier transform emission spectroscopy. ${ }^{o}$ Ref $15 f$; emission, UV and visible spectra of $\mathrm{B}_{2} .{ }^{p}$ Global (G) and local (L) minima. ${ }^{q}$ Ref 15 g ; emission spectroscopy.
dissociation energies $D_{\mathrm{e}}=52 \mathrm{kcal} / \mathrm{mol}$ at the MRCI level with respect to the adiabatic fragments $\operatorname{Mg}\left({ }^{3} \mathrm{P}\right)+\mathrm{B}\left({ }^{2} \mathrm{P}\right)$; see Figure 1. With respect to the ground-state asymptotic fragments, either state is unbound by about $8.5 \mathrm{kcal} / \mathrm{mol}$ because of the significant $\mathrm{Mg}\left({ }^{3} \mathrm{P} \leftarrow{ }^{1} \mathrm{~S}\right)$ excitation energy of 2.603 eV (MRCI).
B_{2}. Table 3 lists our results on the first five states of B_{2} $\left(\mathrm{X}^{3} \Sigma_{\mathrm{g}}{ }^{-}, \mathrm{a}^{5} \Sigma_{\mathrm{u}}{ }^{-}, \mathrm{A}^{3} \Pi_{\mathrm{u}}, \mathrm{b}^{1} \Delta_{\mathrm{g}}\right.$, and $\mathrm{c}^{1} \Sigma_{\mathrm{g}}{ }^{+}$), while corresponding PECs are plotted in Figure 2. Table 4 shows leading CASSCF configurations and Mulliken populations for these states. On the basis of the main CASSCF CFs and Mulliken popula-
tions, the bonding is adequately represented by the vbL diagrams 5-9.

$\mathrm{B}\left({ }^{2} \mathrm{P} ; \mathrm{M}= \pm 1\right) \quad \mathrm{B}\left({ }^{2} \mathrm{P} ; \mathrm{M}= \pm 1\right) \quad b^{1} \Delta_{\mathrm{g}}$

$\mathrm{B}\left({ }^{2} \mathrm{P} ; \mathrm{M}= \pm 1\right) \quad \mathrm{B}\left({ }^{2} \mathrm{P} ; \mathrm{M}=\mp 1\right)$
$c^{1} \Sigma_{\mathrm{g}}^{+}$
The really fascinating bonding structures of $\mathrm{X}^{3} \Sigma_{\mathrm{g}}{ }^{-}, \mathrm{a}^{5} \Sigma_{\mathrm{u}}{ }^{-}$, $\mathrm{A}^{3} \Pi_{\mathrm{u}}, \mathrm{b}^{1} \Delta_{\mathrm{g}}$, and $\mathrm{c}^{1} \Sigma_{\mathrm{g}}{ }^{+}$consist of two $1 / 2 \pi$, two $1 / 2 \pi+1 / 2 \sigma$, one $1 / 2 \sigma+$ one $1 / 2 \pi$, one π (or two $1 / 2 \pi$), and one π bond, respectively. Our numerical results shown in Table 3 are in very good agreement with previous theoretical values as well as with relevant experimental findings (experimental results on the $\mathrm{a}^{5} \Sigma_{\mathrm{u}}{ }^{-}$state do not seem to exist). Observe that the first four excited states span an energy range of about $25 \mathrm{kcal} /$ mol ; they are practically evenly spaced, while in the $\mathrm{c}^{1} \Sigma_{\mathrm{g}}{ }^{+}$ state, an avoided crossing around 3.5 bohr gives rise to a local minimum at 3.54 bohr. In addition, with the exception of the $a^{5} \Sigma_{\mathrm{u}}{ }^{-}$state which correlates to the first excited state of a single boron atom, $B\left({ }^{4} P\right)+B\left({ }^{2} P\right)$, the remaining four states trace their lineage to the ground-state B atoms; see Figure 2.
B. The Triatomic $\mathbf{M g B}_{2}$. Table 5 collects total energies, equilibrium geometries ($r_{\mathrm{Mg}-\mathrm{B}}, r_{\mathrm{B}-\mathrm{B}}, \angle \mathrm{BMgB} \equiv \varphi$), atomization energies (AE) with respect to the adiabatic fragments $\mathrm{Mg}+$ 2B, dipole moments (μ), Mulliken charges ($q_{\mathrm{Mg}}, q_{\mathrm{B}}$), and energy separations (T_{e}) of 36 states/isomers at the CASSCF, MRCI, and MRCI +Q levels of theory; for the ${ }^{1} \mathrm{~A}_{1}$ state only, MP2 and MP4 results are also reported. Figure 3 indicates relative energies of all MgB_{2} states examined spanning an energy range of 4.2 eV ; note that they are all bound with respect to the groundstate atoms $\operatorname{Mg}\left({ }^{1} \mathrm{~S}\right)+2 \mathrm{~B}\left({ }^{2} \mathrm{P}\right)$. In what follows, we describe in some detail the structure and bonding character of the first ten states in ascending energy order; the tenth state $\left(\tilde{\mathrm{g}}^{5} \mathrm{~A}_{2}\right)$ is located $32 \mathrm{kcal} / \mathrm{mol}$ above the $\mathrm{X}^{1} \mathrm{~A}_{1}$ state.

Figure 2. Potential energy curves of the first five states of the B_{2} molecule at the MRCI/cc-pVQZ level of theory. All energies have been shifted by $+49 E_{\mathrm{h}}$.

TABLE 4: Leading CASSCF Configuration Functions and Atomic Mulliken Distributions of the $\mathbf{B}_{\mathbf{2}}$ Molecule

state	configuration $^{\text {a }}$	2 s	$2 \mathrm{p}_{z}$	$2 \mathrm{p}_{x}$	$2 \mathrm{p}_{y}$
$\mathrm{X}^{3} \Sigma_{\mathrm{g}}{ }^{-}$	$\begin{aligned} & \mid 1 \sigma_{\mathrm{g}}{ }^{2}\left[(0.89) 1 \sigma_{\mathrm{u}}{ }^{2}-\right. \\ & \left.\left.(0.33) 2 \sigma_{\mathrm{g}}{ }^{2}\right] 1 \pi_{\mathrm{ux}}{ }^{1} 1 \tau_{\mathrm{uy}}{ }^{1}\right\rangle \end{aligned}$	1.41	0.55	0.50	0.50
$\mathrm{a}^{5} \Sigma_{\mathrm{u}}{ }^{-}$	$0.97\left\|1 \sigma_{\mathrm{g}}{ }^{2} \sigma_{\mathrm{u}}{ }^{1} 2 \sigma_{\mathrm{g}}{ }^{1} 1 \pi_{\mathrm{ux}}{ }^{1} 1 \pi_{\mathrm{uy}}{ }^{1}\right\rangle$	1.24	0.74	0.50	0.50
$\mathrm{A}^{3} \Pi_{u}$	$0.92 / \sqrt{2}\left\|1 \sigma_{\mathrm{g}}{ }^{2} 1 \sigma_{\mathrm{u}}{ }^{2} 2 \sigma_{\mathrm{g}}{ }^{1}\left(1 \pi_{\mathrm{ux}}{ }^{1}+\mathrm{i} 1 \tau_{\mathrm{uy}}{ }^{1}{ }^{1}\right)\right\rangle$	1.63	0.77	0.29	29
$\mathrm{b}^{1} \Delta_{\mathrm{g}}$	$\begin{aligned} & 1 / \sqrt{2}\left\{\mid 1 \sigma_{\mathrm{g}}{ }^{2}\left[(0.87) 1 \sigma_{\mathrm{u}^{2}}{ }^{2}-\right.\right. \\ & \left.(0.35) 2 \sigma_{\mathrm{g}}{ }^{2} 11 \pi_{\mathrm{ux}} 11 \bar{\pi}_{\mathrm{u}}{ }^{1}\right\rangle+ \\ & \left.0.62 i\left\|1 \sigma_{\mathrm{g}} 11 \sigma_{\mathrm{u}}{ }^{2}\left(1 \pi_{\mathrm{ux}}{ }^{2}-1 \pi_{\mathrm{uu}}{ }^{2}\right)\right\rangle\right\} \end{aligned}$	1.39	0.57	0.50	0.50
$\mathrm{c}^{1} \Sigma_{\mathrm{g}}{ }^{+}$	$0.61\left\|1 \sigma_{\mathrm{g}}^{2} 1 \sigma_{\mathrm{u}}{ }^{2}\left(1 \pi_{\mathrm{ux}}{ }^{2}+1 \pi_{\mathrm{uy}}{ }^{2}\right)\right\rangle$	1.40	0.54	0.52	0.52
$\mathrm{c}^{1} \sum_{\mathrm{g}}{ }^{+}(\mathrm{L})$	$0.91\left\|1 \sigma_{\mathrm{g}}{ }^{2} 1 \sigma_{\mathrm{u}}{ }^{2} 2 \sigma_{\mathrm{g}}{ }^{2}\right\rangle$	1.73	1.07	0.08	0.08

${ }^{a}$ Only the σ valence electrons are enumerated. ${ }^{b}$ Global (G) and local
(L) minimum.
$\tilde{X}^{l} A_{l}(B M g B)$. The main CASSCF equilibrium configurations of the $\tilde{X}^{1} \mathrm{~A}_{1}$ state, formally the ground state ${ }^{18}$ (vide infra), and corresponding Mulliken atomic populations $(\mathrm{Mg} / \mathrm{B}+\mathrm{B})$ are

$$
\begin{aligned}
& \left|\tilde{\mathrm{X}}^{1} \mathrm{~A}_{1}\right\rangle \approx\left|1 \mathrm{a}_{1}^{2} 2 \mathrm{a}_{1}^{2} 1 \mathrm{~b}_{1}^{2}\left[(0.87) 1 \mathrm{~b}_{2}^{2}-(0.26) 3 \mathrm{a}_{1}^{2}\right]\right\rangle \\
& 3 \mathrm{~s}^{0.96} 3 \mathrm{p}_{z}^{0.08} 3 \mathrm{p}_{x}^{0.23} 3 \mathrm{p}_{y}^{0.13} / \\
& \quad\left(2 \mathrm{~s}^{1.51} 2 \mathrm{p}_{z}^{0.95} 2 \mathrm{p}_{y}^{0.56}\right)_{a_{1}}\left(2 \mathrm{p}_{x}^{1.69}\right)_{b_{1}}\left(2 \mathrm{~s}^{1.07} 2 \mathrm{p}_{y}^{0.54} 2 \mathrm{p}_{z}^{0.06}\right)_{b_{2}}\left(2 \mathrm{p}_{x}^{0.08}\right)_{a_{2}}
\end{aligned}
$$

Note that only the eight valence electrons are counted. $(2 \mathrm{~s})_{a_{1}}$, $\left(2 \mathrm{p}_{z}\right)_{a_{1}},\left(2 \mathrm{p}_{x}\right)_{b_{1}}$, and $\left(2 \mathrm{p}_{y}\right)_{b_{2}}$ refer to symmetric combinations and $\left(2 \mathrm{p}_{y}\right)_{a_{1}},(2 \mathrm{~s})_{b_{2}},\left(2 \mathrm{p}_{z}\right)_{b_{2}}$, and $\left(2 \mathrm{p}_{x}\right)_{a_{2}}$ to antisymmetric combinations of the relevant orbitals.

The formation of the $\mathrm{BMgB} \tilde{\mathrm{X}}^{1} \mathrm{~A}_{1}$ state can been thought of from either $\mathrm{B}_{2}\left(\mathrm{X}^{3} \Sigma_{\mathrm{g}}-{ }^{3} \mathrm{~B}_{1}\right.$ in $\left.\mathrm{C}_{2 v}\right)+\mathrm{Mg}\left({ }^{3} \mathrm{P} /{ }^{3} \mathrm{~B}_{1}\right)$ or $\mathrm{MgB}\left({ }^{2} \Pi\right.$ (4)) $+\mathrm{B}\left({ }^{2} \mathrm{P}\right)$. Of course, the in situ Mg atom in the ${ }^{2} \Pi(4)$ state of MgB is in its first excited ${ }^{3} \mathrm{P}\left(3 s^{1} 3 p^{1}\right)$ state; note that the ${ }^{2} \Pi$ (4) state of MgB is not included in Table 1. Both channels are

TABLE 5: Absolute Energies E (hartree), Bond Lengths $r(\AA)$ and Angles $\angle \mathrm{BMgB} \equiv \varphi(\mathrm{deg})$, Atomization Energies AE (kcal/ mol) with Respect to the Adiabatic Products, Dipole Moments μ (debye), Mulliken Charges on Mg and B (central B for the MgBB geometries) Atoms q, and Energy Separations $T_{\mathrm{e}}(\mathrm{kcal} / \mathrm{mol})$ of the MgB_{2}, at Different Levels of Theory.

geometry	state	method ${ }^{\text {a }, ~}{ }^{\text {a }}$	-E	$r_{\text {Mg-B }}$	$r_{\text {B }-\mathrm{B}}$	φ	AE	$\langle u\rangle / \mu_{\mathrm{FF}}{ }^{c}$	$q_{\text {Mg }}$	$-_{\text {B }}$	$T_{\text {e }}$
	$\tilde{\mathrm{X}}^{1} \mathrm{~A}_{1}$	CASSCF	248.91786	2.245	1.570	40.93	93.4	4.66/4.66	0.49	0.24	0.0
		MRCI	249.02006	2.225	1.560	41.06	108.1	5.00/4.99	0.52	0.26	0.0
		MRCI+Q	249.0259	2.225	1.561	41.1	109	15.01			0.0
		MP2	248.98362	2.243	1.570	40.96	115.9				0.0
		MP4	249.02142	2.251	1.581	41.10	113.8				0.0
		RCCSD (T)	249.02159	2.223	1.560	41.08	107.9	15.14			0.0
		$\operatorname{RCCSD}(\mathrm{T}){ }^{d}$	249.02191	2.224	1.561	41.10	107.9	15.11			0.0
		$\operatorname{RCCSD}(\mathrm{T})^{e}$		2.224	1.560	41.1					0.0
	$\tilde{a}^{3} \mathrm{~B}_{1}$	CASSCF	248.91411	2.300	1.625	41.37	91.1	4.23/4.23	0.43	0.22	2.4
		MRCI	249.01880	2.279	1.617	41.55	107.3	4.71/4.75	0.46	0.23	0.79
		MRCI+Q	249.0254	2.279	1.617	41.5	109	14.82			0.3
		RCCSD (T)	249.01976	2.272	1.616	41.67	106.7	14.99			1.15
		$\operatorname{RCCSD}(\mathrm{T})^{d}$	249.01988	2.274	1.616	41.63	106.6	14.98			1.27
		$\operatorname{RCCSD}(\mathrm{T})^{e}$		2.274	1.616	41.6					1.2
$\mathrm{Mg}-\mathrm{B}-\mathrm{B}$	$\tilde{\mathrm{b}}^{3} \Sigma^{-}$	CASSCF	248.90897	2.287	1.578		87.8	2.76/2.76	0.39	0.29	5.6
		MRCI	249.00285	2.266	1.578		97.3	3.02/3.12	0.41	0.33	10.8
		MRCI+Q	249.0085	2.265	1.581		98	13.19			11
		$\operatorname{RCCSD}(\mathrm{T})^{\text {f }}$	249.00327	2.270	1.574		96.4	/2.88			11.5
		$\operatorname{RCCSD}(\mathrm{T})^{d}$	249.00298	2.268	1.573		96.0	/2.79			11.9
		$\operatorname{RCCSD}(\mathrm{T})^{e}$		2.263	1.556						11.9
Mg -B-B	$\tilde{c}^{5} \Sigma^{-}$	CASSCF	248.90938	2.291	1.564		149.2	2.24/2.24	0.39	0.29	5.3
		MRCI	249.00112	2.269	1.558		156.5	2.18/2.19	0.40	0.33	11.9
		MRCI+Q	249.0064	2.269	1.558		157	/2.18			12
		RCCSD(T)	249.00313	2.269	1.556		156.3	/2.16			11.6
		$\operatorname{RCCSD}(\mathrm{T})^{d}$	249.00339	2.269	1.556		156.3	/2.17			11.6
		$\operatorname{RCCSD}(\mathrm{T})^{e}$		2.270	1.556						11.8
$\int_{B}^{M g}$	$\tilde{A}^{1} \mathrm{~B}_{1}$	CASSCF	248.89926	2.426	1.574	37.86	81.8	1.74/1.74	0.39	0.20	11.7
		MRCI	249.00001	2.355	1.575	39.07	95.5	2.37/2.88	0.40	0.20	12.6
		MRCI+Q	249.0062	2.335	1.580	39.5	97	/3.11			12
$\mathrm{Mg}-\mathrm{B}$ - B	$\tilde{B}^{1} \boldsymbol{\Delta}$	CASSCF	248.87383	2.283	1.610		65.8	2.53/2.53	0.36	0.30	27.6
		MRCI	248.97827	2.257	1.607		81.9	3.11/3.27	0.38	0.33	26.2
		MRCI+Q	248.9855	2.256	1.610		84	13.39			25
	$\tilde{d}^{3} \mathrm{~B}_{2}$	CASSCF	248.87253	2.281	1.517	38.85	65.0	4.57/4.57	0.48	0.24	28.4
		MRCI	248.97416	2.254	1.503	38.94	79.3	5.05/5.11	0.50	0.25	28.8
		MRCI + Q	248.9802	2.251	1.504	39.0	80	15.16			29
$\mathrm{Mg}-\mathrm{B}-\mathrm{B}$	$\tilde{e}^{3} \Pi$	CASSCF	248.87170	2.132	1.517		64.5	7.38/7.38	0.53	0.38	29.0
		MRCI	248.97249	2.105	1.519		78.3	7.45/7.40	0.51	0.38	29.9
		MRCI+Q	248.9789	2.105	1.519		79	17.32			29
	$\tilde{\mathrm{f}}^{3} \mathrm{~A}_{1}$	CASSCF	248.87277	2.554	1.680	38.39	65.1	1.00/1.00	0.31	0.16	28.3
		MRCI	248.97071	2.535	1.672	38.51	77.2	1.30/1.38	0.34	0.17	31.0
		MRCI+Q	248.9770	2.538	1.675	38.5	78	/1.41			31
B B											
	$\tilde{\mathrm{g}}^{5} \mathrm{~A}_{2}$	CASSCF	248.87381	2.539	1.519	34.80	126.9	1.57/1.57	0.34	0.17	27.6
		MRCI	248.96958	2.511	1.504	34.86	136.7	1.68/1.67	0.36	0.18	31.7
		MRCI+Q	248.9751	2.512	1.504	34.9	137	/1.67			32
$\mathrm{Mg}-\mathrm{B}-\mathrm{B}$	$10^{3} \Delta$	CASSCF	248.86512	2.269	1.591		60.3	1.78/1.78	0.38	0.32	33.1
		MRCI	248.96709	2.251	1.581		74.9	1.94/2.00	0.40	0.35	33.2
		MRCI+Q	248.9737	2.251	1.582		76	/2.03			33
Mg -B-B	$11^{1} \Sigma^{+}$	CASSCF	248.86554	2.279	1.618		60.6	2.56/2.56	0.35	0.29	32.8
		MRCI	248.96579	2.252	1.621		74.0	3.18/3.35	0.37	0.32	34.1
		MRCI+Q	248.9724	2.251	1.625		75	13.49			34
$\mathrm{B}_{\mathrm{B}}^{\mathrm{Mg}}$	$12^{5} \mathrm{~B}_{1}$	CASSCF	248.86714	2.410	1.652	40.09	122.7	2.07/2.07	0.50	0.25	31.8
		MRCI	248.96575	2.401	1.644	40.03	134.3	2.09/2.09	0.48	0.24	34.1
		MRCI + Q	248.9719	2.404	1.643	40.0	135	/2.10			34
${ }_{B}^{\mathrm{Mg}}$	$13^{3} \mathrm{~A}_{2}$	CASSCF	248.86780	2.444	1.515	36.11	62.0	2.42/2.42	0.42	0.21	31.4
		MRCI	248.96462	2.413	1.504	36.31	73.3	2.66/2.81	0.42	0.21	34.8
		MRCI+Q	248.9702	2.413	1.504	36.3	74	/2.87			35
$\mathrm{Mg}-\mathrm{B}-\mathrm{B}$	$14^{1} \Sigma^{-}$	CASSCF	248.85741	2.238	1.577		55.5	1.85/1.85	0.44	0.41	37.9
		MRCI	248.95868	2.241	1.574		69.6	1.87/1.92	0.42	0.40	38.5
		MRCI+Q	248.9653	2.244	1.576		71	/1.90			38
$\mathrm{Mg}-\mathrm{B}-\mathrm{B}$	$15^{1} \Pi$	CASSCF	248.85659	2.183	1.528		55.0	4.93/4.93	0.57	0.46	38.5
		MRCI	248.95655	2.134	1.526		68.2	5.40/5.76	0.53	0.42	39.9
		MRCI+Q	248.9633	2.128	1.528		70	/5.87			39
Mg -B-B	$16^{3} \Sigma^{+}$	CASSCF	248.85625	2.263	1.599		54.8	1.71/1.71	0.37	0.32	38.7
		MRCI	248.95376	2.245	1.596		66.5	1.88/1.94	0.39	0.35	41.6
		MRCI+Q	248.9597	2.245	1.598		67	/1.97			42

TABLE 5: Continued.

geometry	state	method $^{\text {a,b }}$	-E	$r_{\text {Mg-B }}$	$r_{\text {B }-\mathrm{B}}$	φ	AE	$\langle\mu\rangle / \mu_{\mathrm{FF}}{ }^{c}$	q_{Mg}	$-q_{\text {B }}$	$T_{\text {e }}$
	$17^{1} \mathrm{~A}_{2}$	CASSCF	248.82611	2.395	1.551	37.78	35.9	2.70/2.70	0.41	0.20	57.6
		MRCI	248.93301	2.362	1.588	39.29	53.5	3.02/3.15	0.38	0.19	54.6
		$\mathrm{MRCI}+\mathrm{Q}$	248.9404	2.357	1.596	39.6	55	/3.19			54
Mg	$18^{5} \mathrm{~B}_{2}$	CASSCF	248.83253	2.370	1.514	37.26	101.0	2.22/2.22	0.51	0.26	53.5
		MRCI	248.92674	2.366	1.504	37.08	109.8	2.24/2.24	0.50	0.25	58.6
		$\mathrm{MRCI}+\mathrm{Q}$	248.9321	2.369	1.503	37.0	110	/2.23			59
	$19^{1} \mathrm{~B}_{2}$ global	CASSCF	248.82542	2.381	1.458	35.64	35.4	1.83/1.83	0.45	0.22	58.0
		MRCI	248.92670	2.366	1.450	35.68	49.5	1.80/1.81	0.41	0.21	58.6
		$\mathrm{MRCI}+\mathrm{Q}$	248.9329	2.366	1.450	35.7	51	/1.83			58
	$19^{1} \mathrm{~B}_{2}$ local	CASSCF	248.78913	2.449	2.381	58.16	12.7	3.01/3.01	0.42	0.21	80.8
		MRCI	248.89158	2.433	2.179	53.22	27.5	3.70/3.73	0.42	0.21	80.6
		MRCI+Q	248.8993	2.435	2.147	52.3	29	13.74			79
$\mathrm{Mg}-\mathrm{B}-\mathrm{B}$	$20^{5} \Pi$	CASSCF	248.81307	2.303	1.503		88.8	5.00/5.00	0.61	0.49	65.8
		MRCI	248.90048	2.299	1.501		93.3	4.77/4.76	0.58	0.49	75.0
		MRCI+Q	248.9056	2.302	1.502		93	14.65			76
$\mathrm{B}-\mathrm{Mg}-\mathrm{B}$	$21^{1} \Delta_{\mathrm{g}}$	CASSCF	248.79209	2.317			14.5		0.53	0.27	78.9
		MRCI	248.90040	2.281			33.0		0.62	0.31	75.1
		MRCI+Q	248.9090	2.279			36				73
$\mathrm{B}-\mathrm{Mg}-\mathrm{B}$	$22^{3} \Sigma_{\mathrm{g}}{ }^{-}$	CASSCF	248.79288	2.311			15.0		0.49	0.25	78.4
		MRCI	248.90011	2.274			32.9		0.59	0.30	75.3
		MRCI+Q	248.9085	2.273			35				74
$\mathrm{B}-\mathrm{Mg}-\mathrm{B}$	$23^{1} \Sigma_{\mathrm{g}}{ }^{+}$	CASSCF	248.79112	2.320			13.9		0.54	0.27	79.5
		MRCI	248.89949	2.285			32.4		0.63	0.31	75.7
		MRCI+Q	248.9080	2.283			35				74
$\mathrm{B}-\mathrm{Mg}-\mathrm{B}$	$24^{1} \Sigma^{\text {u }}{ }^{-}$	CASSCF	248.79047	2.322			13.5		0.54	0.27	79.9
		MRCI	248.89888	2.287			32.1		0.64	0.32	76.0
		MRCI+Q	248.9074	2.286			35				74
$\mathrm{B}-\mathrm{Mg}-\mathrm{B}$	$25^{3} \Pi_{u}$	CASSCF	248.78964	2.445			13.0		0.41	0.21	80.5
		MRCI	248.89687	2.394			30.8		0.50	0.25	77.3
		MRCI+Q	248.9055	2.391			33				76
$\mathrm{B}-\mathrm{Mg}-\mathrm{B}$	$26^{3} \Delta_{u}$	CASSCF	248.78807	2.315			12.0		0.57	0.28	81.5
		MRCI	248.89662	2.282			30.7		0.65	0.33	77.5
		MRCI+Q	248.9052	2.281			33				76
$\mathrm{B}-\mathrm{Mg}-\mathrm{B}$	$27^{3} \Sigma_{u}{ }^{+}$	CASSCF	248.78748	2.318			11.6		0.57	0.29	81.8
		MRCI	248.89604	2.285			30.3		0.66	0.33	77.8
		MRCI+Q	248.9046	2.284			33				76
$\mathrm{B}-\mathrm{Mg}-\mathrm{B}$	$28^{5} \Sigma{ }^{-}$	CASSCF	248.78804	2.271			73.1		0.52	0.26	81.5
		MRCI	248.89446	2.245			89.6		0.62	0.31	78.8
		MRCI+Q	248.9027	2.245			93				77
$\mathrm{B}-\mathrm{Mg}-\mathrm{B}$	$29^{5} \Delta_{g}$	CASSCF	248.78161	2.287			69.0		0.61	0.30	85.5
		MRCI	248.88957	2.260			86.5		0.69	0.35	81.9
		MRCI+Q	248.8980	2.259			89				80
$\mathrm{B}-\mathrm{Mg}-\mathrm{B}$	$30^{5} \Sigma_{\mathrm{g}}{ }^{+}$	CASSCF	248.78110	2.288			68.7		0.61	0.31	85.8
		MRCI	248.88907	2.261			86.2		0.70	0.35	82.2
		MRCI+Q	248.8975	2.260			88				81
$\mathrm{Mg}-\mathrm{B}-\mathrm{B}$	315Δ	CASSCF	248.78881	2.275	1.798		73.6	-0.14/-0.14	0.21	0.17	81.0
		MRCI	248.88882	2.251	1.794		86.0	0.62/0.76	0.26	0.21	82.4
		MRCI+Q	248.8954	2.250	1.797		87	/0.87			82
$\mathrm{Mg}-\mathrm{B}-\mathrm{B}$	$32{ }^{5} \Sigma^{+}$	CASSCF	248.78620	2.276	1.801		71.9	-0.22/-0.22	0.20	0.16	82.6
		MRCI	248.88597	2.251	1.799		84.2	0.56/0.71	0.25	0.20	84.2
		$\mathrm{MRCI}+\mathrm{Q}$	248.8925	2.250	1.801		85	/0.82			84
$\mathrm{B}-\mathrm{Mg}-\mathrm{B}$	$33^{1} \Pi_{g}$	CASSCF	248.76773	2.553			0.8		0.22	0.11	94.2
		MRCI	248.87498	2.446			17.1		0.37	0.19	91.0
		MRCI+Q	248.8841	2.434			20				89
	$34{ }^{5} \mathrm{~A}_{1}$	CASSCF	248.77367	2.385	1.734	42.63	64.1	4.34/4.34	0.57	0.28	90.5
		MRCI	248.86926	2.303	1.696	43.21	73.7	5.01/5.32	0.59	0.29	94.6
		$\mathrm{MRCI}+\mathrm{Q}$	248.8754	2.297	1.692	43.22	74	15.43			94
$\mathrm{B}-\mathrm{Mg}-\mathrm{B}$	$35^{5} \Pi_{g}$	CASSCF	248.75807	2.224			54.3		0.55	0.28	100.3
		MRCI	248.86616	2.194			71.8		0.65	0.32	96.6
		$\mathrm{MRCI}+\mathrm{Q}$	248.8747	2.193			74				95

[^1]

Figure 3. Relative energy levels of MgB_{2} at the MRCI/cc-pVQZ level.
consistent with the following vbL bonding representation of the $\mathrm{BMgB} \tilde{\mathrm{X}}^{1} \mathrm{~A}_{1}\left(={ }^{3} \mathrm{~B}_{1} \otimes^{3} \mathrm{~B}_{1}\right)$ state.

The bonding comprises one " σ "-like (in-plane) and one " π "like (out-of-plane) $2 \mathrm{e}^{-}-3$ center bonds represented by the two isosceles triangles shown in diagram 10. The vbL diagram (10) is in accordance with the Mulliken distributions given above: About $0.7 \mathrm{e}^{-}$are transferred from the metal to the in situ B_{2} moiety through the " π " plane, while about $0.2 \mathrm{e}^{-}$are moving back from B_{2} to Mg through the " σ " plane. The BB bond length in the $\tilde{\mathrm{X}}^{1} \mathrm{~A}_{1}$ state decreases considerably as compared to the free $\mathrm{B}_{2}\left(\mathrm{X}^{3} \Sigma_{\mathrm{g}}{ }^{-}\right)$at the same level of theory, $\Delta r=-0.04 \AA$ (see Tables 3 and 5). Therefore, it is clear that the two B atoms can be considered bonded in the $\tilde{\mathrm{X}}^{1} \mathrm{~A}_{1}$ state of MgB_{2}.

At infinity, the wave function can be described by the product $\left.\left.\left.{ }^{1} S\right\rangle_{\mathrm{Mg}} \times\left.\right|^{2} P\right\rangle_{\mathrm{B}} \times\left.\right|^{2} P\right\rangle_{\mathrm{B}}$ and the atomization energy with respect to the ground-state atoms (see Figure 4) is 108.1(109) kcal/ mol at the $\mathrm{MRCI}(+\mathrm{Q})$ level of theory, Table 5. Correcting with respect to the zero-point harmonic vibrational (ZPE) energy, $\omega_{1}\left(\mathrm{~B}_{2}\right)=453.6, \omega_{2}\left(\mathrm{~A}_{1}\right)=494.7$, and $\omega_{3}\left(\mathrm{~A}_{1}\right)=1079.6 \mathrm{~cm}^{-1}$ as obtained at the MP2 level, the atomization energy becomes 108.1(109) $-1 / 2\left(\omega_{1}+\omega_{2}+\omega_{3}\right)=105.2(106) \mathrm{kcal} / \mathrm{mol}$. With respect to the adiabatic products $\mathrm{B}_{2}\left(\mathrm{~b}^{1} \Delta_{\mathrm{g}}\right)+\operatorname{Mg}\left({ }^{1} \mathrm{~S}\right)$ (see Figure 4 and diagram 8) the $\operatorname{MRCI}(+\mathrm{Q})$ dissociation energy is $D_{\mathrm{e}}=$ $55.6(56) \mathrm{kcal} / \mathrm{mol}$, or $D_{0}=D_{\mathrm{e}}-\mathrm{ZPE}(\mathrm{BMgB})+\omega_{\mathrm{e}} / 2\left[\mathrm{~B}_{2}\left(\mathrm{~b}^{1} \Delta \mathrm{~g}\right)\right]$ $=55.6(56)-2.90+1.42=54.1(55) \mathrm{kcal} / \mathrm{mol}$.

Figure 4. MRCI potential energy profiles of the $\tilde{X}^{1} A_{1}$ and $\tilde{a}^{3} B_{1}$ states of MgB_{2} molecule, keeping the $\mathrm{B}-\mathrm{B}$ distance or the angle φ at their equilibrium values. All energies have been shifted by $+248 E_{\mathrm{h}}$.

Moving from $C_{2 v}\left[\mathrm{BMgB}\left(\tilde{\mathrm{X}}^{1} \mathrm{~A}_{1}\right)\right]$ symmetry to the linear $D_{\infty h}$ structure, or $\tilde{\mathrm{X}}^{1} \mathrm{~A}_{1} \rightarrow{ }^{1} \Delta_{\mathrm{g}}$, the $\mathrm{MRCI}(+\mathrm{Q})$ barrier to linearity is $75.1(73) \mathrm{kcal} / \mathrm{mol}$, Figure 5 . The ${ }^{1} \Delta_{\mathrm{g}}$ state is the lowest of BMgB linear geometry giving rise to two Renner-Teller components, $\tilde{\mathrm{X}}^{1} \mathrm{~A}_{1}$ and $\tilde{\mathrm{A}}^{1} \mathrm{~B}_{1}$, upon bending. The bonding vbL diagram of the ${ }^{1} \Delta_{\mathrm{g}}$ structure is shown below.

The CASSCF Mulliken atomic populations (Mg / B) $3 \mathrm{~s}^{0.82} 3 \mathrm{p}_{z}^{0.32} 3 \mathrm{p}_{x}^{0.12} 3 \mathrm{p}_{y}^{0.12} / 2 \mathrm{~s}^{1.67} 2 \mathrm{p}_{z}^{0.68} 2 \mathrm{p}_{x}^{0.45} 2 \mathrm{p}_{y}^{0.45}$ are in conformity with diagram 11. Table 5 lists numerical results concerning the ${ }^{1} \Delta_{\mathrm{g}}$ (transition) linear state.
$\tilde{a}^{3} B_{l}(B M g B)$. The leading equilibrium CASSCF configurations and atomic Mulliken populations of the $\tilde{a}^{3} \mathrm{~B}_{1}$ state, formally the first excited state of $\mathrm{MgB}_{2}{ }^{18}$ located $0.79(0.3)[1.15] \mathrm{kcal} /$ mol above the $\tilde{\mathrm{X}}^{1} \mathrm{~A}_{1}$ state at the $\operatorname{MRCI}(+\mathrm{Q})[\operatorname{CCSD}(\mathrm{T})]$ level, are as follows $(\mathrm{Mg} / \mathrm{B}+\mathrm{B})$:

$$
\begin{aligned}
& \left|\left.\right|^{3} \mathrm{~B}_{1}\right\rangle=\sim \mid\left[0.89\left(1 \mathrm{a}_{1}{ }^{2} 2 \mathrm{a}_{1}{ }^{2} 3 \mathrm{a}_{1}{ }^{1}\right)-\right. \\
& \left.\left.\quad 0.17\left(1 \mathrm{a}_{1}{ }^{2} 3 \mathrm{a}_{1}{ }^{1} 4 \mathrm{a}_{1}{ }^{2}\right)\right] 1 \mathrm{~b}_{1}{ }^{1} 1 \mathrm{~b}_{2}{ }^{2}\right\rangle
\end{aligned} \quad \begin{aligned}
& 3 \mathrm{~s}^{1.10} 3 \mathrm{p}_{z}^{0.11} 3 \mathrm{p}_{x}^{0.07} 3 \mathrm{p}_{y}^{0.19} / \\
& \quad\left(2 \mathrm{~s}^{1.68} 2 \mathrm{p}_{z}^{1.00} 2 \mathrm{p}_{y}^{1.02}\right)\left(2 \mathrm{p}_{x}^{0.86}\right)\left(2 \mathrm{~s}^{1.14} 2 \mathrm{p}_{y}^{0.51} 2 \mathrm{p}_{z}^{0.08}\right)\left(2 \mathrm{p}_{x}^{0.05}\right)
\end{aligned}
$$

Figure 4 shows the potential energy profile with respect to Mg $+B_{2}$; the bond distance of B_{2} is fixed to the equilibrium value of the $\tilde{a}^{3} \mathrm{~B}_{1}$ state along the potential curve but is relaxed to the

Figure 5. MRCI potential energy profiles of the $\tilde{X}^{1} \mathrm{~A}_{1}, \tilde{a}^{3} \mathrm{~B}_{1}$, and $\tilde{\mathrm{A}}^{1} \mathrm{~B}_{1}$ states of MgB_{2} with respect to the angle φ, while keeping the $r_{\mathrm{Mg}-\mathrm{B}}$ distance at its equilibrium value. Energies shifted by +248 E_{h}.
$\mathrm{X}^{3} \Sigma_{\mathrm{g}}{ }^{-}$bond length at infinity. The bonding can be described by the vbL icon (12).

The in situ B_{2} finds itself in the $\mathrm{A}^{3} \Pi_{u}\left({ }^{3} \mathrm{~B}_{1}\right)$ state with the Mg in its ground ${ }^{1} \mathrm{~S}$ state; however, as seen in Figure 4, it correlates to $\mathrm{B}_{2}\left(\mathrm{X}^{3} \Sigma_{\mathrm{g}}{ }^{-}\right)+\operatorname{Mg}\left({ }^{1} \mathrm{~S}\right)$. The bonding is due to a transfer of about $0.7 \mathrm{e}^{-}$from the $3 \mathrm{~s}^{2}\left(2 \mathrm{a}_{1}{ }^{2}\right)$ pair of Mg to the empty $2 \mathrm{p}_{z}$ orbitals of B atoms ("in-plane", σ character), with a concomitant back transfer of 0.1 and $0.2 \mathrm{e}^{-}$from the $2 \mathrm{p}_{x}{ }^{1}\left(\mathrm{~b}_{1}\right)$ single electron and $\sim 2 \mathrm{~s}^{2}\left(\mathrm{~b}_{2}\right)$ pair of the B_{2} moiety to the $3 \mathrm{p}_{x}$ and $3 \mathrm{p}_{y}$ empty orbitals of Mg , respectively; see diagram 12 . Thus, a net charge of about $0.4 \mathrm{e}^{-}$is moving from Mg to B_{2}. With respect to $\mathrm{B}_{2}\left(\mathrm{X}^{3} \Sigma_{\mathrm{g}}^{-}\right)+\mathrm{Mg}\left({ }^{1} \mathrm{~S}\right)$, the $\mathrm{MRCI}(+\mathrm{Q})$ binding energy is $41.7(43) \mathrm{kcal} / \mathrm{mol}$. The MRCI B-B bond distance and $\angle \mathrm{BMgB}$ angle increase by $0.06 \AA$ and 0.5 deg as compared to the $\tilde{\mathrm{X}}^{1} \mathrm{~A}_{1}$ state.

Figure 5 shows the potential energy profile of the $\tilde{\mathrm{a}}^{3} \mathrm{~B}_{1}$ state with respect to the $\angle \mathrm{BMgB}$ angle. The corresponding linear structure BMgB of ${ }^{3} \Sigma_{\mathrm{g}}-$ symmetry is (accidentally) degenerate to the ${ }^{1} \Delta_{\mathrm{g}}$ structure, which correlates to $\tilde{\mathrm{X}}^{1} \mathrm{~A}_{1}$ (vide supra), with a barrier to linearity of $74.5 \mathrm{kcal} / \mathrm{mol}$. The population analysis (Mg/B) $3 \mathrm{~s}^{0.82} 3 \mathrm{p}_{z}^{0.29} 3 \mathrm{p}_{x}^{0.16} 3 \mathrm{p}_{y}^{0.16} / 2 \mathrm{~s}^{1.68} 2 \mathrm{p}_{z}^{0.68} 2 \mathrm{p}_{x}^{0.44} 2 \mathrm{p}_{y}^{0.44}$ supports the vbL icon (13).
$\tilde{b}^{3} \Sigma^{-}(M g B B)$. This is the second excited state of MgB_{2} or the ground state of the linear MgBB isomer, located $11 \mathrm{kcal} /$ mol above the (formal) ground state $\tilde{\mathrm{X}}^{1} \mathrm{~A}_{1}$. The formation of

$\mathrm{B}\left({ }^{2} \mathrm{P} ; \mathrm{M}= \pm 1\right) \mathrm{Mg}\left({ }^{(} \mathrm{S}\right) \mathrm{B}\left({ }^{2} \mathrm{P} ; \mathrm{M}=\mp 1\right) \quad 22^{3} \Sigma_{\mathrm{g}}^{-}(1)$
the molecule can be thought of as either $\operatorname{MgB}\left(\mathrm{X}^{2} \Pi\right)+\mathrm{B}\left({ }^{2} \mathrm{P}\right)$ or $\operatorname{Mg}\left({ }^{1} \mathrm{~S}\right)+\mathrm{B}_{2}\left(\mathrm{X}^{3} \Sigma_{\mathrm{g}}{ }^{-}\right)$; the corresponding potential energy profiles are displayed in Figure 6. At the $\operatorname{MRCI}(+\mathrm{Q})$ level, the dissociation energies with respect to $\mathrm{MgB}+\mathrm{B}$ or $\mathrm{Mg}+\mathrm{B}_{2}$ are $84.5(85)$ and $31.7(33) \mathrm{kcal} / \mathrm{mol}$, respectively.

This is a truly multireference state as is evidenced from the leading CASSCF configurations

$$
\begin{aligned}
\left|\tilde{\mathrm{b}}^{3} \Sigma^{-}\right\rangle \approx & \mid\left[0.69\left(1 \sigma^{2} 2 \sigma^{2} 3 \sigma^{2}\right)-0.47\left(1 \sigma^{2} 2 \sigma^{2} 4 \sigma^{2}\right)\right] 1 \pi_{x}^{1} 1 \pi_{y}^{1}+ \\
& \left.\left(1 \sigma^{2} 2 \sigma^{2} 3 \sigma^{1} 4 \sigma^{1}\right)\left[0.37\left(1 \bar{\pi}_{x}^{1} 1 \pi_{y}^{1}\right)+0.26\left(1 \pi_{x}^{1} 1 \bar{\pi}_{y}^{1}\right)\right]\right\rangle
\end{aligned}
$$

With the help of the Mulliken CASSCF atomic populations

$$
3 \mathrm{~s}^{1.03} 3 \mathrm{p}_{z}^{0.51} 3 \mathrm{p}_{x}^{0.01} 3 \mathrm{p}_{y}^{0.01} / 2 \mathrm{~s}^{1.33} 2 \mathrm{p}_{z}^{0.93} 2 \mathrm{p}_{x}^{0.49} 2 \mathrm{p}_{y}^{0.49} / 2 \mathrm{~s}^{1.36} 2 \mathrm{p}_{z}^{0.71} 2 \mathrm{p}_{x}^{0.50} 2 \mathrm{p}_{y}^{0.50}
$$

the bonding can be captured by the vbL graph (14).

A total of $0.4 \mathrm{e}^{-}$are transferred from Mg to B_{2} along the σ frame, about $0.3 \mathrm{e}^{-}$to the central B atom and $0.1 \mathrm{e}^{-}$to the second B directly linked to the central B atom.

The MRCI $(+\mathrm{Q})[\operatorname{RCCSD}(\mathrm{T})]$ atomization energy with respect to $\mathrm{Mg}\left({ }^{1} \mathrm{~S}\right)+2 \mathrm{~B}\left({ }^{2} \mathrm{P}\right)$ is $97.3(98)[96.4] \mathrm{kcal} / \mathrm{mol}$. Perhaps it should be mentioned at this point that the $\operatorname{RCCSD}(\mathrm{T})$ calculations were based on CASSCF orbitals. Finally, the bond distances $r_{\mathrm{Mg}-\mathrm{B}}$ and $r_{\mathrm{B}-\mathrm{B}}$ are shorter by 0.12 and $0.02 \AA$ as compared to the free $\mathrm{MgB}\left(\mathrm{X}^{2} \Pi\right)$ and $\mathrm{B}_{2}\left(\mathrm{X}^{3} \Sigma_{g}{ }^{-}\right)$, respectively.
$\tilde{c}^{5} \Sigma^{-}(M g B B)$. This linear high-spin excited state is located $12 \mathrm{kcal} / \tilde{\mathrm{b}}^{3}$ above the $\tilde{\mathrm{X}}^{1} \mathrm{~A}_{1}$ state and just $1 \mathrm{kcal} / \mathrm{mol}$ higher than the $\tilde{\mathrm{b}}^{3} \Sigma^{-}$state at the MRCI or MRCI+Q level. However, at the $\operatorname{RCCSD}(\mathrm{T})$ level of theory, the $\tilde{\mathrm{b}}^{3} \Sigma^{-}$and $\tilde{\mathrm{c}}^{5} \Sigma^{-}$states are degenerate; therefore, the labeling of the ${ }^{5} \Sigma^{-}$state as "c" is only formal. Similar results are reported in ref 8 . As expected, this state has a single reference character, $\left|c^{5} \Sigma^{-}\right\rangle=$ $\sim 0.96\left|1 \sigma^{2} 2 \sigma^{2} 3 \sigma^{1} 4 \sigma^{1} 1 \pi_{x}{ }^{1} 1 \pi_{y}{ }^{1}\right\rangle$, which in conjunction with the Mulliken atomic populations ($\mathrm{Mg} / \mathrm{B} / \mathrm{B}$)

$$
\begin{aligned}
& 3 \mathrm{~s}^{1.01} 3 \mathrm{p}_{z}^{0.54} 3 \mathrm{p}_{x}^{0.01} 3 \mathrm{p}_{y}^{0.01} / 2 \mathrm{~s}^{1.30} 2 \mathrm{p}_{z}^{0.98} 2 \mathrm{p}_{x}^{0.48} 2 \mathrm{p}_{y}^{0.48} / \\
& 2 \mathrm{~s}^{1.32} 2 \mathrm{p}_{z}^{0.72} 2 \mathrm{p}_{x}^{0.51} 2 \mathrm{p}_{y}^{0.51}
\end{aligned}
$$

points to the following vbL bonding diagram:

$\mathrm{Mg}\left({ }^{3} \mathrm{P} ; \mathrm{M}=0\right) \quad \mathrm{B}\left({ }^{2} \mathrm{P} ; \mathrm{M}= \pm 1\right) \quad \mathrm{B}\left({ }^{2} \mathrm{P} ; \mathrm{M}=\mp 1\right) \quad \tilde{c}^{5} \Sigma^{-}(1)$
Note that, similarly to the $\tilde{b}^{3} \Sigma^{-}$state, the in situ B_{2} moiety is in the ${ }^{3} \Sigma_{\mathrm{g}}-$ state, but the in situ Mg atom is excited to the ${ }^{3} \mathrm{P}\left(3 \mathrm{~s}^{1-}\right.$ $3 p^{1}$) term. Nevertheless, by pulling apart the Mg atom, i.e., Mg $+\mathrm{B}_{2}$, the $\tilde{\mathrm{c}}^{5} \Sigma^{-}$correlates to the first excited state of $\mathrm{B}_{2}\left(\mathrm{a}^{5} \Sigma^{-}\right)$ $+\operatorname{Mg}\left({ }^{1} S\right)$; see Figure 6. Imagining this state as formed from $\mathrm{MgB}+\mathrm{B}$, i.e., by pulling away the terminal B atom, the $\tilde{\mathrm{c}}^{5} \Sigma^{-}$

Figure 6. MRCI potential energy profiles of the $\tilde{b}^{3} \Sigma^{-}$and $\tilde{c}^{5} \Sigma^{-}$states of MgB_{2} keeping the $\mathrm{B}-\mathrm{B}$ or the $\mathrm{Mg}-\mathrm{B}$ distances at their equilibrium values. Energies shifted by $+248 E_{\mathrm{h}}$.
state correlates to the $\mathrm{b}^{4} \Pi$ state of MgB (diagram 4$)+\mathrm{B}\left({ }^{2} \mathrm{P}\right.$; $\mathrm{M}= \pm 1$); see Figure 6 .

With respect to the first channel, $\operatorname{Mg}\left({ }^{1} \mathrm{~S}\right)+\mathrm{B}_{2}\left(\mathrm{a}^{5} \Sigma^{-}\right)$, the adiabatic binding energy is $D_{\mathrm{e}}=35.2(37) \mathrm{kcal} / \mathrm{mol}$; diabatically, namely, $\operatorname{Mg}\left({ }^{3} \mathrm{P}\right)+\mathrm{B}_{2}\left(\mathrm{X}^{3} \Sigma^{-}\right), D_{\mathrm{e}}=90.7(92) \mathrm{kcal} / \mathrm{mol}$ at the $\mathrm{MRCI}(+\mathrm{Q})$ level. With respect to the second channel, $\mathrm{MgB}-$ $\left(b^{4} \Pi\right)+\mathrm{B}\left({ }^{2} \mathrm{P}\right), D_{\mathrm{e}}=103.3(104) \mathrm{kcal} / \mathrm{mol}$.
$\tilde{A}^{l} B_{I}(B M g B)$. Formally, this is the fourth excited state and the third of $C_{2 v}$ symmetry, lying $12.6(12) \mathrm{kcal} / \mathrm{mol}$ higher than the $\tilde{\mathrm{X}}^{1} \mathrm{~A}_{1}$ state. Its energy distance from the $\tilde{\mathrm{c}}^{5} \Sigma^{-}$is just 0.7 $\mathrm{kcal} / \mathrm{mol}$ but by adding the Davidson correction these two states become degenerate; see Table 5 and Figure 3.

The most important CASSCF configurations and corresponding Mulliken atomic densities $(\mathrm{Mg} / \mathrm{B}+\mathrm{B})$ are as follows:

$$
\begin{aligned}
& \left|\tilde{\mathrm{A}}^{1} \mathrm{~B}_{1}\right\rangle=\sim\left|1 \mathrm{a}_{1}{ }^{2} 2 \mathrm{a}_{1}{ }^{2} 3 \mathrm{a}_{1}{ }^{1}\left[(0.88) 1 \overline{\mathrm{~b}}_{1}{ }^{1} 1 \mathrm{~b}_{2}{ }^{2}-(0.27) 4 \mathrm{a}_{1}{ }^{2} 1 \overline{\mathrm{~b}}_{1}{ }^{1}\right]\right\rangle \\
& 3 \mathrm{~s}^{1.03} 3 \mathrm{p}_{z}^{0.40} 3 \mathrm{p}_{x}^{0.03} 3 \mathrm{p}_{y}^{0.07} / \\
& \quad\left(2 \mathrm{~s}^{1.59} 2 \mathrm{p}_{z}^{1.43} 2 \mathrm{p}_{y}^{0.58}\right)\left(2 \mathrm{p}_{x}^{0.88}\right)\left(2 \mathrm{~s}^{1.14} 2 \mathrm{p}_{y}^{0.51} 2 \mathrm{p}_{z}^{0.10}\right)\left(2 \mathrm{p}_{x}^{0.05}\right)
\end{aligned}
$$

As in the case of the $\tilde{X}^{1} \mathrm{~A}_{1}$, the wave function of the $\tilde{\mathrm{A}}^{1} \mathrm{~B}_{1}$ state at infinity can be described by the product $\left|\operatorname{Mg}\left({ }^{1} \mathrm{~S}\right)\right\rangle \times$ $\left|\mathrm{B}\left({ }^{2} \mathrm{P}\right)\right\rangle \times\left|\mathrm{B}\left({ }^{2} \mathrm{P}\right)\right\rangle$, but the in situ Mg atom is in its first excited state, ${ }^{3} \mathrm{P}\left(3 s^{1} 3 p^{1}\right)$. The molecule can be thought of either as Mg $\left({ }^{3} \mathrm{P}\right)+\mathrm{B}_{2}\left(\mathrm{X}^{3} \Sigma_{\mathrm{g}}{ }^{-}\right)$or as $\mathrm{MgB}+\mathrm{B}\left({ }^{2} \mathrm{P}\right)$. The bonding is graphically shown in diagram 16. A total of about $0.4 \mathrm{e}^{-}$are

transferred from Mg to $\mathrm{B}_{2}: 0.6 \mathrm{e}^{-}$are moving from Mg to B through the $\sigma\left(\mathrm{a}_{1}\right)$ plane ($2 \mathrm{e}^{-}-3$ centers), while about $0.2 \mathrm{e}^{-}$ are back-transferred through the $\pi\left(1 \mathrm{e}^{-}-3\right.$ centers) plane and $\sigma\left(\mathrm{b}_{2}\right)$ bond.

The $\operatorname{MRCI}(+\mathrm{Q})$ atomization energy with respect to $\operatorname{Mg}\left({ }^{1} \mathrm{~S}\right)$ $+2 \mathrm{~B}\left({ }^{2} \mathrm{P}\right)$ is $95.5(97) \mathrm{kcal} / \mathrm{mol}$. In comparison with the ground state, the $\mathrm{Mg}-\mathrm{B}$ distance increases by $0.13 \AA$, while the $\mathrm{B}-\mathrm{B}$ one increases only slightly.
$\tilde{B}^{1} \Delta(M g B B), \tilde{e}^{3} \Pi(M g B B)$. The fifth and seventh excited states have linear geometry; they are of symmetries ${ }^{1} \Delta$ and ${ }^{3} \Pi$ and are located 26 and $30 \mathrm{kcal} / \mathrm{mol}$ above the ground state, respectively (Figure 3). Their leading CASSCF equilibrium configurations and atomic Mulliken population are ($\mathrm{Mg} / \mathrm{B} / \mathrm{B}$)

$$
\left.\begin{array}{c}
\left|\tilde{\mathrm{B}}^{1} \Delta_{1}\right\rangle=\sim \mid\left[0.56\left(1 \sigma^{2} 2 \sigma^{2} 3 \sigma^{2}\right)-\right. \\
\left.\left.0.35\left(1 \sigma^{2} 2 \sigma^{2} 4 \sigma^{2}\right)\right]\left(1 \pi_{x}^{2}-1 \pi_{y}^{2}\right)\right\rangle \\
3 \mathrm{~s}^{1.13} 3 \mathrm{p}_{z}^{0.42} 3 \mathrm{p}_{x}^{0.02} 3 \mathrm{p}_{y}^{0.02} / 2 \mathrm{~s}^{1.35} 2 \mathrm{p}_{z}^{0.86} 2 \mathrm{p}_{x}^{0.52} 2 \mathrm{p}_{y}^{0.52} / \\
2 \mathrm{~s}^{1.37} 2 \mathrm{p}_{z}^{0.73} 2 \mathrm{p}_{x}^{0.46} 2 p_{y}^{0.46}
\end{array}\right] \begin{array}{r}
\left|\mathrm{e}^{3} \Pi_{1}\right\rangle=\sim 1 / \sqrt{2} \mid\left[0.90\left(1 \sigma^{2} 2 \sigma^{2} 3 \sigma^{1}\right)-\right. \\
\left.\left.0.19\left(1 \sigma^{2} 3 \sigma^{1} 4 \sigma^{2}\right)\right]\left(1 \pi_{x}^{1} 1 \pi_{y}^{2}+1 \pi_{x}^{2} 1 \pi_{y}^{1}\right)\right\rangle \\
3 \mathrm{~s}^{1.11} 3 \mathrm{p}_{z}^{0.07} 3 \mathrm{p}_{x}^{0.07} 3 \mathrm{p}_{y}^{0.16} / 2 \mathrm{~s}^{1.18} 2 \mathrm{p}_{z}^{0.64} 2 \mathrm{p}_{x}^{0.51} 2 \mathrm{p}_{y}^{1.02} / \\
2 \mathrm{~s}^{1.24} 2 \mathrm{p}_{z}^{0.67} 2 \mathrm{p}_{x}^{0.41} 2 \mathrm{p}_{y}^{0.78}
\end{array}
$$

The bonding character of both states is captured by the vbL diagrams 17 and 18.

$\mathrm{Mg}\left({ }^{1} \mathrm{~S}\right) \quad \mathrm{B}\left({ }^{2} \mathrm{P} ; \mathrm{M}= \pm 1\right) \quad \mathrm{B}\left({ }^{2} \mathrm{P} ; \mathrm{M}= \pm 1\right) \quad \widetilde{B}^{1} \Delta(1)$

From diagram 17, it is obvious that in the $\tilde{\mathrm{B}}^{1} \Delta$ state its "natural constituents" are $\operatorname{Mg}\left({ }^{1} S\right)+\mathrm{B}_{2}\left(\mathrm{~b}^{1} \Delta_{g}\right.$; Scheme 8). One π bond (B-B) and two σ bonds tie the molecule together, giving rise to an atomization energy of $81.9(84) \mathrm{kcal} / \mathrm{mol}$ at the MRCI$(+Q)$ level. Note that the $B-B$ bond distance $[1.607(1.610) ~ A ̊]$ in the $\tilde{\mathrm{B}}^{1} \Delta$ state is practically the same as the bond distance of the free B_{2} in the $b^{1} \Delta_{g}$ state $[1.617(1.618) \AA$, as the $v b L$ diagram (17) suggests.

In the $\tilde{\mathrm{e}}^{3} \Pi$ state, the central in situ B atom is in its first excited ${ }^{4} \mathrm{P}\left(2 \mathrm{~s}^{1} 2 \mathrm{p}^{2}\right)$ state; therefore, the in situ B_{2} molecule is in the ${ }^{3} \Pi_{\mathrm{g}}$ (2) state (not included in Table 3). From vbL diagrams 17 and 18 , it is suggested that the $\mathrm{Mg}-\mathrm{B}$ and $\mathrm{B}-\mathrm{B}$ bond lengths in the $\tilde{\mathrm{e}}^{3} \Pi$ state should be shorter than the corresponding ones in the $\tilde{\mathrm{B}}^{1} \Delta$ state. The $\mathrm{Mg}-\mathrm{B} \sigma$ bond in the $\tilde{\mathrm{e}}^{3} \Pi$ state should decrease, because the $\operatorname{Mg}\left({ }^{1} \mathrm{~S}\right)$ atom faces a more "exposed" $\mathrm{B}\left({ }^{4} \mathrm{P}\right)$ atom, and this is indeed what is observed: The $\mathrm{Mg}-\mathrm{B}$ and $\mathrm{B}-\mathrm{B}$ bond lengths are shorter by 0.15 and $0.09 \AA$ in the $\tilde{\mathrm{e}}^{3} \Pi$ state as compared to the $\tilde{\mathrm{B}}^{1} \Delta$ state. These differences are in agreement with the observed ones in the appropriate states of the free $\mathrm{MgB}\left[{ }^{4} \Sigma^{-}(3), \mathrm{X}^{2} \Pi\right]$ and $\mathrm{B}_{2}\left[{ }^{3} \Pi_{\mathrm{u}}(2), \mathrm{b}^{1} \Delta_{\mathrm{g}}\right]$ molecules. Finally, the atomization energy of the $\tilde{e}^{3} \Pi$ state with respect to the ground-state atoms $\mathrm{Mg}\left({ }^{1} \mathrm{~S}\right)+2 \mathrm{~B}\left({ }^{2} \mathrm{P}\right)$ (asymptotic products) is $78.3(79) \mathrm{kcal} / \mathrm{mol}$.
$\tilde{d}^{3} B_{2}(B M g B), \tilde{f}^{3} A_{l}(B M g B)$, and $\tilde{g}^{5} A_{2}(B M g B)$. These are the last discussed states in the present work; they are of V-shaped geometry located 29, 31 , and $32 \mathrm{kcal} / \mathrm{mol}$ above the $\tilde{\mathrm{X}}^{1} \mathrm{~A}_{1}$ state (Table 5, Figure 3). Their leading equilibrium CASSCF CFs, Mulliken populations, and bonding vbL graphical representations follow:

$$
\begin{aligned}
& \left|\tilde{\mathrm{d}}^{3} \mathrm{~B}_{2}\right\rangle=\sim \mid\left[0.88\left(1 \mathrm{a}_{1}^{2} 2 \mathrm{a}_{1}{ }^{2} 3 \mathrm{a}_{1}{ }^{1}\right)+\right. \\
& \left.\left.0.22\left(1 a_{1}{ }^{2} 3 a_{1}{ }^{1} 4 a_{1}{ }^{2}\right)\right] 1 b_{1}{ }^{2} 1 b_{2}{ }^{1}\right\rangle \\
& 3 \mathrm{~s}^{1.02} 3 \mathrm{p}_{z}^{0.11} 3 \mathrm{p}_{x}^{0.24} 3 \mathrm{p}_{y}^{0.05} /\left(2 \mathrm{~s}^{1.68} 2 \mathrm{p}_{z}^{0.92} 2 \mathrm{p}_{y}^{1.09}\right)\left(2 \mathrm{p}_{x}^{1.59}\right) \\
& \left(2 \mathrm{~s}^{0.64} 2 \mathrm{p}_{y}^{0.34} 2 \mathrm{p}_{z}^{0.05}\right)\left(2 \mathrm{p}_{x}^{0.08}\right) \\
& 3 \mathrm{~s}^{1.10} 3 \mathrm{p}_{z}^{0.45} 3 \mathrm{p}_{x}^{0.00} 3 \mathrm{p}_{y}^{0.08} /\left(2 \mathrm{~s}^{1.73} 2 \mathrm{p}_{z}^{1.35} 2 \mathrm{p}_{y}^{1.16}\right)\left(2 \mathrm{p}_{x}^{0.08}\right) \\
& \left(2 \mathrm{~s}^{1.27} 2 \mathrm{p}_{y}^{0.46} 2 \mathrm{p}_{z}^{0.10}\right)\left(2 \mathrm{p}_{x}^{0.04}\right) \\
& 3 \mathrm{~s}^{1.16} 3 \mathrm{p}_{z}^{0.40} 3 \mathrm{p}_{x}^{0.03} 3 \mathrm{p}_{y}^{0.03} /\left(2 \mathrm{~s}^{1.73} 2 \mathrm{p}_{z}^{1.36} 2 \mathrm{p}_{y}^{1.14}\right)\left(2 \mathrm{p}_{x}^{0.92}\right) \\
& \left(2 \mathrm{~s}^{0.68} 2 \mathrm{p}_{y}^{0.33} 2 \mathrm{p}_{z}^{0.07}\right)\left(2 \mathrm{p}_{x}^{0.03}\right)
\end{aligned}
$$

Diagrams 19 and 21 show that the two in situ B atoms are nonequivalent, one in the ground $\left({ }^{2} \mathrm{P}\right)$ and the other in its first excited ${ }^{4} \mathrm{P}$ state. But obviously, they should be equivalent on account of symmetry; the mirror images with respect to a symmetry plane bisecting the BMgB angle ensure the $C_{2 v}$ symmetry invariance. Note also that, in the $\tilde{\mathrm{g}}^{5} \mathrm{~A}_{2}$ state, two of the in situ atoms, the (unique) Mg and "one" of B atoms are excited.

Approximately $0.5,0.3$, and $0.3 \mathrm{e}^{-}$are transferred from the Mg atom to the B_{2} moiety in the $\tilde{\mathrm{d}}^{3} \mathrm{~B}_{2}, \tilde{\mathrm{f}}^{3} \mathrm{~A}_{1}$, and $\tilde{\mathrm{g}}^{5} \mathrm{~A}_{2}$ states, respectively. It is interesting that the $B-B$ distance in the $\tilde{d}^{3} B_{2}$ and $\tilde{g}^{5} \mathrm{~A}_{2}$ states is the smallest of all the MgB_{2} states presently studied, about $0.1 \AA$ shorter than the free $\mathrm{B}_{2}\left(\mathrm{X}^{3} \Sigma_{\mathrm{g}}{ }^{-}\right)$. Finally, the adiabatic $\operatorname{MRCI}(+Q)$ atomization energies with respect to

Figure 7. Projection of the crystal structure of MgB_{2} looking from above and along the c axis $(P / m m m),-(\mathrm{Mg}-\mathrm{Mg})=3.08 \AA, \bigcirc-\bigcirc$ $(B-B)=1.78 \AA, \bigcirc(\mathrm{Mg}-\mathrm{B})=2.50 \AA, \angle \mathrm{BMgB} \equiv \varphi=41.6^{\circ}$.
$\operatorname{Mg}\left({ }^{1} \mathrm{~S}\right)+2 \mathrm{~B}\left({ }^{2} \mathrm{P}\right)\left[\tilde{\mathrm{d}}^{3} \mathrm{~B}_{2}, \tilde{\mathrm{f}}^{3} \mathrm{~A}_{1}\right]$ and $\operatorname{Mg}\left({ }^{3} \mathrm{P}\right)+2 \mathrm{~B}\left({ }^{2} \mathrm{P}\right)\left[\tilde{\mathrm{g}}^{5} \mathrm{~A}_{2}\right]$, are 79.3 (80), 77.2 (78), and 136.7 (137) kcal/mol, respectively.

Numerical results for the remaining 24 states presently investigated are listed in Table 5, 6 of which are V-shaped, 8 linear of the MgBB type, and 10 linear of centrosymmetric configuration, $\mathrm{B}-\mathrm{Mg}-\mathrm{B}$. Two of the centrosymmetric structures previously described, ${ }^{1} \Delta_{\mathrm{g}}$ and ${ }^{3} \Sigma_{\mathrm{g}}^{-}$, are transition states, but we did not try to calculate frequencies for the remaining 10 $\mathrm{B}-\mathrm{Mg}-\mathrm{B}$ states.

4. Summary and Remarks

Motivated by the recently discovered high superconducting transition temperature $T_{\mathrm{c}}=39 \mathrm{~K}$ of crystalline MgB_{2}, we have examined by all-electron ab initio multireference and coupledcluster methods the isolated MgB_{2}. A total of 36 states (including some transition states) were calculated spanning an energy range of 4.2 eV , all of which are bound with respect to the ground-state atoms, $\mathrm{Mg}\left({ }^{1} \mathrm{~S}\right)+2 \mathrm{~B}\left({ }^{2} \mathrm{P}\right)$. In addition, we have calculated full potential energy curves for 17 states of the diatomic MgB. As far as we know, only 2 theoretical studies exist in the literature on $\mathrm{MgB},{ }^{13,14}$ while experimental results are completely lacking.

Focusing on the triatomic MgB_{2}, our most import findings can be summarized as follows.
(a) Although formally the ground state is of ${ }^{1} \mathrm{~A}_{1}$ symmetry, a strong contender is a ${ }^{3} \mathrm{~B}_{1}$ state differing in energy by less than $1 \mathrm{kcal} / \mathrm{mol}, T_{\mathrm{e}}=0.79(0.3) \mathrm{kcal} / \mathrm{mol}$ at the $\mathrm{MRCI}(+\mathrm{Q})$ level. In other words, the ${ }^{1} \mathrm{~A}_{1}$ and ${ }^{3} \mathrm{~B}_{1}$ states are degenerate within the accuracy of our calculations.
(b) In all states, about 0.2 to 0.6 electrons are moving from the Mg atom to the in situ B_{2} moiety.
(c) The next V-shaped state ($\tilde{\mathrm{A}}^{1} \mathrm{~B}_{1}$) is located $12 \mathrm{kcal} / \mathrm{mol}$ above the $\tilde{\mathrm{X}}^{1} \mathrm{~A}_{1}$, while two more $C_{2 v}$ states ($\left.\tilde{\mathrm{d}}^{3} \mathrm{~B}_{2}, \tilde{\mathrm{f}}^{5} \mathrm{~A}_{2}\right)$ are well-separated from the ground state, located about $30 \mathrm{kcal} /$ mol higher.
(d) The bonding in most of the MgB_{2} states studied here, but in particular the V -shaped ones, is quite unconventional because of the extraordinary bonding agility of the B atom and the ensuing unusual distribution of the active electrons on the B_{2} molecule.
(e) Schematically, the spatial arrangement of the atoms of crystalline MgB_{2} (space group $P 6 / \mathrm{mmm}$) is shown in the projection in Figure 7, looking down and along the (unique) c crystallographic axis. The top plane is formed of $\mathrm{Mg}(\bullet)$ atoms, and the plane underneath of B atoms (O). The three atoms of the MgB_{2} units are in special crystallographic positions, namely
$(0,0,0),(1 / 3,2 / 3,1 / 2)$, and $(2 / 3,1 / 3,1 / 2)$ corresponding to Mg , B, and B atoms, respectively (see also ref 3).

From Figure 7, we observe that the solid structure is composed of identical isosceles triangles; therefore, relevant states of a single (isolated) MgB_{2} molecule (and excluding higher states) can only be the two practically degenerate $\tilde{X}^{1} \mathrm{~A}_{1}$ and $\tilde{a}^{3} \mathrm{~B}_{1}$ states.
$\mathrm{Mg}-\mathrm{B}$ and $\mathrm{B}-\mathrm{B}$ distances are larger in the crystal structure as compared to the isolated molecule by about 0.25 and 0.20 \AA, respectively. Remarkably, however, the $\angle \mathrm{BMgB}(=\varphi)$ angle is identical in the solid state $\left(\varphi=41.6^{\circ}\right)$ and in the $\tilde{X}^{1} \mathrm{~A}_{1}(\varphi=$ $\left.41.1^{\circ}\right)$ or $\tilde{\mathrm{a}}^{3} \mathrm{~B}_{1}\left(\varphi=41.6^{\circ}\right)$ molecular state.
(f) Our calculations indicate that electrons are fed copiously from the Mg layers to the B layers. We dare suggest that in the crystalline environment each Mg atom can lose up to one electron or more, transferred to two equivalent B atoms. Our bonding analysis of the $\tilde{\mathrm{X}}^{1} \mathrm{~A}_{1}$ and $\tilde{\mathrm{a}}^{3} \mathrm{~B}_{1}$ states points to σ (inplane) and π (out-of-plane) bands in the solid phase. In the latter, the superconductivity is allowed by both perpendicular (π bands) and parallel (σ bands) bands to the boron sheets. ${ }^{2}$

Obviously, the connection of an isolated species (here, MgB_{2}) to the relevant polymeric crystal (here, $\left.\left(\mathrm{MgB}_{2}\right)_{x}\right)$ is far from trivial. We hope however that the present study and analysis can be of some help for the better understanding of this very interesting material.

Acknowledgment. D.T. expresses her gratitude to the Academy of Athens for financial support. Part of this work is supported by the Greek Ministry of Education and European Union through the E.P.E.A.K. program PYTHAGORAS (70/ 3/7373) for basic research.

References and Notes

(1) Nagamatsu, J.; Nakagawa, N.; Muranaka, T.; Zenitani, Y.; Akimitsu, J. Nature (London) 2001, 410, 63.
(2) See, for instance, the very interesting article by Canfield, P. C.; Crabtree, G. W. Phys. Today 2003, 56 (3), 34 and references therein.
(3) Jones, M. E.; Marsh, R. E. J. Am. Chem. Soc. 1954, 76, 1434.
(4) See, for example, (a) Bugoslavsky, Y.; Perkins, G. K.; Qi, X.; Cohen, L. F.; Caplin, A. D. Nature (London) 2001, 411, 563. (b) Jim, S.; Mavoori, H.; Bower, C.; van Dover, R. B. Nature (London) 2001, 410, 563. (c) Kang, W. N.; Kim, H.-J.; Choi, E.-M.; Jung, C. U.; Lee, S.-I. Science 2001, 292, 1521.
(5) (a) An, J. M.; Pickett, W. E. Phys. Rev. Lett. 2001, 86, 4366. (b) Choi, H.-J.; Roundy, D.; Sun, H.; Cohen, M. L.; Louie, S. G. Phys. Rev. B 2002, 66, 20513. (c) Li, Z.; Yang, J.; Hou, L. G.; Zhu, Q. Phys. Rev. B 2002, 65, 100507. (d) Nakamura, J. et al. Phys. Rev. B 2003, 68, 64515. (e) Martin, I. I.; Anderson, O. K.; Jepsen, O.; Golubov, A. A.; Dolgov, O. V.; Kortus, J. Phys. Rev. B 2004, 69, 56501.
(6) V. Grignard received the Nobel Prize (1/2) in 1912, for the discovery of the so-called Grignard reagent which in recent years has greatly advanced the progress of organic chemistry. In 1976, the Nobel Prize in chemistry was given to W. N. Limpscomb, Jr., for his studies on the structure of boranes illuminating problems of chemical bonding. H. C. Brown was the recipient of the 1979 Nobel Prize (1/2) in chemistry for the development of the use of boron compounds into important reagents in organic synthesis. James, L. K. In Nobel Laureates in Chemistry, 1901-1992 American Chemical Society and the Chemical Heritage Foundation: Washington, DC, 1993. Also, List of the Nobel Prize Winners 1901-1993; Nobel Committees for Physics and Chemistry; The Royal Swedish Academy of Sciences: Stockholm, Sweden, 1994.
(7) Ercoç, Ş. Int. J. Mod. Phys. C 2003, 14, 483.
(8) Yang, C.-L.; Zhang, X.; Han, K.-L. THEOCHEM 2004, 677, 11.
(9) Lee, E. P. F.; Wright, T. G. J. Phys. Chem. A 2004, 108, 7424.
(10) Dunning, T. H., Jr. J. Chem. Phys. 1989, 90, 1007.
(11) (a) Werner, H.-J.; Knowles, P. J. J. Chem. Phys. 1988, 89, 5803. (b) Knowles, P. J.; Werner, H.-J. Chem. Phys. Lett. 1988, 145, 514. (c) Werner, H.-J.; Reinsch, E. A. J. Chem. Phys. 1982, 76, 3144. (d) Werner, H.-J. Adv. Chem. Phys. 1987, 69, 1.
(12) MOLPRO 2000 is a package of ab initio programs written by Werner, H.-J.; Knowles, P. J.; with contributions by Amos, R. D.; Bernhardsson, A.; Berning, A.; Celani, P.; Cooper, D. L.; Deegan, M. J. O.; Dobbyn, A. J.; Eckert, F.; Hampel, C.; Hetzer, G.; Korona, T.; Lindh, R.; Lloyd, A. W.; McNikolas, S. J.; Manby, F. R.; Meyer, W.; Mura, M. E.; Nicklass, A.; Palmieri, P.; Pitzer, R.; Rauhut, G.; Schuetz, M.; Stoll, H.; Stone, A. J.; Tarroni, R.; Thorsteinsson, T. University of Cardiff Consultants, Ltd., 2004; http://www.molpro.net.
(13) Boldyrev, A. I.; Gonzales, N.; Simons, J. J. Phys. Chem. 1994, 98 , 9931.
(14) Pelegrini, M.; Roberto-Neto, O.; Machado, F. B. C. Int. J. Quantum Chem. 2003, 95, 205.
(15) (a) Douglas, A. E.; Herzberg, G. Can. J. Res. 1940, 18, 165. Huber, K. P.; Herzberg, G. Molecular spectra and molecular structure IV. Constants of diatomic molecules; Van Nostrand: Princeton, 1979. (b) Chase, M. W., Jr.; Davies, C. A.; Downey, J. R., Jr.; Frurip, D. J.; McDonald, R. A.; Syverud, A. N. J. Phys. Chem. Ref. Data 1985, 14, Suppl. 1. (c) Bredohl, H.; Dubois, I.; Nzohabonayo, P. J. Mol. Spectrosc. 1982, 93, 281. (d) Bredohl, H.; Dubois, I.; Melen, R. J. Mol. Spectrosc. 1987, 121, 128. (e) Brazier, C. R.; Carrick, P. G. J. Chem. Phys. 1994, 100, 7928. (f) Brazier, C. R.; Carrick, P. G. J. Chem. Phys. 1992, 96, 8684. (g) DeRose, M. E.; Carrick, P. G.; Brazier, R. J. Mol. Spectrosc. 1995, 174, 379.
(16) (a) Langhoff, S. R.; Bauschlicher, C. W., Jr. J. Chem. Phys. 1991, 95, 5882. (b) Martin, J. M. L.; Francois, J. P.; Gijbels, R. Chem. Phys. Lett. 1992, 189, 529. (c) McLean, A. D.; Liu, B.; Chandler, G. S. J. Chem. Phys. 1992, 97, 8459. (d) Peterson, K. A.; Kendall, R. A.; Dunning, T. H., Jr. J. Chem. Phys. 1993, 99, 9790. (e) Peterson, K. A.; Wilson, A. K.; Woon, D. E.; Dunning, T. H., Jr. Theor. Chem. Acc. 1997, 97, 251. (f) Müller, T.; Dallos, M.; Lischka, H.; Dubrovay, Z.; Szalay, P. G. Theor. Chem. Acc. 2001, 105, 227.
(17) Moore, C. E. Atomic Energy Levels; NSRDS-NBS Circular No. 35; U.S. Government Printing Office: Washington, DC, 1971.
(18) Our preliminary calculations using the cc-pVDZ basis reverse the order of the two lowest states (${ }^{3} \mathrm{~B}_{1}$ instead of $\left.{ }^{1} \mathrm{~A}_{1}\right)$, but with the cc-pVTZ or cc-pVQZ basis sets, the ${ }^{1} \mathrm{~A}_{1}$ becomes the ground state at the MRCI or $\mathrm{MRCI}+\mathrm{Q}$ level of theory. Quadratic CI calculations, QCISD(T)/cc-pVQZ, also predict that the ground state is of ${ }^{1} \mathrm{~A}_{1}$ symmetry.

[^0]: * E-mail: mavridis@chem.uoa.gr.

[^1]: ${ }^{a}$ Internally contracted MRCI. ${ }^{b}+\mathrm{Q}$ refers to the multireference Davidson correction. ${ }^{c}\langle\mu\rangle$ calculated as expectation value; μ_{FF} calculated by the finite field method. ${ }^{d} \operatorname{RCCSD}(\mathrm{~T})$ based on CASSCF orbitals. ${ }^{e}$ Ref $9, \operatorname{RCCSD}(\mathrm{~T}) /$ aug-cc-pVQZ level of theory. ${ }^{f} \mathrm{RCCSD}(\mathrm{T})$ based on five configuration CASSCF orbitals.

